

Unit 9: Algebra

Lesson I: Finding a rule (I)

→ pages 64–66

1. a)

Number of cakes	I	2	3	5	10	100	1,500
Number of stars	l × 3	2 × 3	3 × 3	5 × 3	10 × 3	100 × 3	1,500 × 3 =
	= 3	= 6	= 9	= 15	= 30	= 300	4,500

b) For *n* fairy cakes, you need $n \times 3$ stars.

2.	Number of cakes	5	6	12	20	101	Ь
	Number of stars	25	30	60	100	505	<i>b</i> × 5

Children should draw a picture of fairy cake with 5 stars on it.

3. Patterns matched to rules:

Top pattern $\rightarrow n \times 4$

2nd pattern \rightarrow double *n*

3rd pattern \rightarrow 3 × n

Bottom pattern $\rightarrow n \times 5$

4.	Minutes Zac has been painting	45	50	90	120	х
	Minutes Kate has been painting	15	20	60	90	x – 30

If Zac has been painting for x minutes, Kate has been painting for x - 30 minutes.

If Kate has been painting for y minutes, Zac has been painting for y + 30 minutes.

5. a) *b* × 8

 $x \times 3$

 $m \times 7$

k × 52

b) The number of days in d years is $365 \times d$.

6.	I	3	12	15·5	х
	5	7	16	19.5	x + 4

Either:

Rule to get from upper number to lower number is add 4

Rule to get from lower number to upper number is subtract 4.

	2	4	8	2 × y ÷ 5
2.5	5	10	20	у

Either:

Rule to get from upper number to lower number is halve and multiply by 5.

Rule to get from lower number to upper number is double and divide by 5.

Reflect

Same: both rules involve the digit 5.

Different: the first rule involves multiplying *a* by 5 and the second rule involves adding 5 to *a*.

Lesson 2: Finding a rule (2)

→ pages 67-69

1. a)

Week	ı	2	3	5	10	II
Total savings	28	31	34	40	55	58

b) After y weeks, Olivia has saved $25 + 3 \times y$ pounds.

2. Number line showing jumps of £4 backwards from £50.

Week	I	2	3	5	10	n
Money left	46	42	38	30	10	50 – 4n

After *n* weeks, he has $50 - 4 \times n$ pounds left.

3.	Number of triangles	I	2	3	4	5	10	100
	Number of sticks used	3	5	7	q	Ш	21	201

To make 1 triangle, 3 sticks are used.

To make 2 triangles, 5 sticks are used.

To make 3 triangles, 7 sticks are used.

To make n triangle, $1 + 2 \times n$ sticks are used.

4. For g houses, you need $5 + 5 \times g$ sticks. (Accept or equivalent expression; for example: $(g + 1) \times 5$)

5. a) For n squares, you need 2n + 2 circles.

n = 100, so 2n = 200

2n + 2 = 202 circles

b) Answers will vary; for example:
Two circles drawn in each square: For *n* squares, you need 2*n* circles.

Reflect

Answers will vary; for example:

Emma puts £100 in a bank account and takes £3 out every week to pay for a trip to the swimming pool. After y weeks how much money is left in the account?

Lesson 3: Using a rule (I)

→ pages 70-72

- **1.** a) If Richard has *x* guinea pigs, Luis has *x* + 2 guinea pigs.
 - b) Bar model with six sections labelled x, 2, x, 2, x, 2 (can be in any order).
 - c) Ambika has 15 guinea pigs.

(t			Number of guinea pigs							
	Richard	1	2	5	10	20				
	Luis	3	4	7	12	22				
	Ambika	q	12	21	36	66				

2. a) Input 3 5 10 Output 5 25 50 10 15

> If the input is a, the output is $5 \times a$ (which can be written as 5a).

h) /						
D)	Input	- 1	2	3	5	10
	Output	7	12	17	27	52

If the input is b, the output is 5b + 2.

c) Outputs will vary as children choose own inputs, for example:

Input	1	2	3	5	10
Output	15	20	25	35	60

If the input is c, the output is 5(2 + c) or 10 + 5c.

d) Outputs will vary as children choose own inputs; for example:

Input	I	2	3	5	10
Output	10	20	30	50	100

If the input is *d*, the output is 10*d*.

3.	Input	I	2	5	100	1,000	а
	Output for – I0	-q	-8	-5	90	990	a – 10
	Output for +5 – I5	-q	-8	⁻ 5	90	990	a + 5 = 15 = $a - 10$

Yes, Max is correct since a + 5 - 15 = a - 10.

- **4.** a) and b) There are many possible pairs of operations; for example:
 - $+ 10 \times 5; \times 10 \times 10; \times 2 + 80$

Children should complete the table according to their functions; for example:

+ 10 × 5 gives:

Input	10	20	30	40	х
Output	100	150	200	250	5(x + 10) or $5x + 50$

Reflect

No, Emma is not correct.

When x = 100: 3x + 2 = 300 + 2 = 302

When x = 10: 3x + 2 = 30 + 2 = 32

 $32 \times 10 = 320$ which is not 302, Emma's suggestion does

Reasons will vary; for example: Using the rule on x = 10gives $(3 \times 10) + 2$. When you then multiply this answer by 10, this gives $3 \times 100 + 20$. This is not the same as the required output of $3 \times 100 + 2$.

Lesson 4: Using a rule (2)

→ pages 73-75

1. a) The total value is 5*n* pence.

		·		
b)	Number of coins	Reena's total value		
	4	5p × 4 = 20p		
	5	5p × 5 = 25p		
	10	5p × 10 = 50p		
	30	5p × 30 = I50p		
	50	5p × 50 = 250p		

2. a) Hiring of the court costs 20*n* pence (for *n* minutes).

)	Time in minutes	Cost				
	n	$20p \times n = 20pn$				
	10	20p × I0 = 200p (=£2)				
	30	20p × 30 = 600p (=£6)				
	60	20p × 60 = I,200p (=£I2)				
	120	20p × I20 = 2,400p (=£24)				

3.		x + 30	30 <i>- x</i>	30 <i>x</i>
	<i>x</i> = 5	35	25	150
	x = 10	40	20	300
	x = 30	60	0	900
	x = 0	30	30	0

- 4. No, the order of the operations matters. If Aki adds 5 then multiplies by 10 he would get $(7 + 5) \times 10 = 12 \times 10 = 120.$ The correct answer is $(7 \times 10) + 5 = 70 + 5 = 75$.
- **5.** If y is an even number then 5y will be a multiple of 10 so 100 - 5y will be a multiple of 10.
- **6.** When y = 1, 10y y = 9. Other examples will vary, depending on the choice of y but 10y - y will always be equal to 9y. Diagrams could include bar models split into 10 sections marked y with one subtracted.

Reflect

Answers will vary; for example:

$$y = 1: 4 + 2y = 6$$

2

$$y = 5$$
: $4 + 2y = 14$

Doubling any whole number gives an even number, so 2y is always even. 4 is even and when you add two even numbers together the answer will also be even. So, the rule 4 + 2y always generates even numbers.

POWER MATHS

Lesson 5: Using a rule (3)

→ pages 76-78

- **1.** a) Length of ribbon left is 100 5y.
 - b) There is 40 cm of ribbon left.
- **2.** a) The total height is 15 + 10n.
 - b) $15 + 10 \times 8 = 15 + 80$ The height is 80 cm.
- **3.** a) A: a + 50,
- C: $\frac{a}{4}$ or $a \div 4$
- B: *a* 50 D: 50 + 3*a*
- b) A = 125 B = 25 C = 18.75 D = 275
- **4.** Equivalent expressions matched:
 - 5 less than $y \rightarrow y 5$
 - y more than $20 \rightarrow 20 + y$
 - double $y \rightarrow 2y$

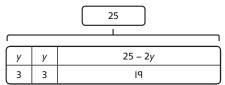
5.

	Write an expression for each ?.	Substitute <i>n</i> = II0 into each expression. Calculate the value of ?.
n n n n 20 ?	3 <i>n</i> – 20	310
n 1 10	$\frac{n-10}{2}$ (or $(n-10) \div 2$)	50
n 1 10	$\frac{n-10}{4}$ (or $(n-10) \div 4$)	25

Reflect

When y = 3, 25 - 2y = 25 - 6 = 19

Bar models may vary; for example:



Lesson 6: Formulae

→ pages 79-81

- **1.** a) Formula: 3*a* Perimeter = 12 cm
 - b) Formula: 4*a* Perimeter = 16 cm
- c) Formula: 2*a* + 2*b* Perimeter = 18 cm
- d) Formula: 4a + 4bPerimeter = 36 cm
- 2. Tower A = 1,200 inches Tower B = 2,400 inches Tower C = 1,800 inches
- **3.** 200 × 48 = 9,600 The rocket has travelled 9,600 miles.

- 4. Max is incorrect, since one side of each of the squares now lies inside the new shape. The perimeter of the new shape is 6a; for example:
 a = 2 cm, so perimeter of the new shape is
 6 × 2 = 12 cm.
- **5.** Pattern A continued: 99 + 4 = 100 + 3
 - 99 + 5 = 100 + 4
 - 99 + a = 100 + a 1

Described in words: Adding a number to 99 will always give the same answer as adding one less than the number to 100.

- Pattern B continued: $99 \times 3 = 100 \times 3 3$,
 - $99 \times 4 = 100 \times 4 4$
 - $99 \times b = 100 \times b b$

Described in words: Multiplying a number by 99 will always give the same answer as multiplying it by 100 and then subtracting one lot of the number.

Reflect

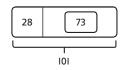
The formula for the perimeter is 2x + y.

Substituting x = 10 and y = 8 into this expression gives 20 + 8 = 28.

Lesson 7: Solving equations (I)

→ pages 82-84

- **1.** a) Right-hand column completed: 250 350 Additional rows will vary depending on choice of *a*. Check right-hand column = *a* + 150.
 - b) Right-hand column completed: 140 130 100 Additional rows will vary depending on choice of *b*. Check right-hand column = 150 *b*.
 - c) c = 101 28 = 73



c = 73

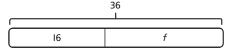
- **2.** a) Equation: m + 50 = 500; m = 500 50 = 450. Mass of flour is 450 g.
 - b) Equation: s 25 = 250; s = 250 + 25 = 275. Bag originally contained 275 g of raisins.
- **3.** a) x 10 = 300

$$x = 300 + 10 = 310$$

b) 300 = 10y

$$y = 300 \div 10 = 30$$

- c) $z \div 10 = 300$
 - $z = 300 \times 10 = 3,000$
- **4.** No, Luis is not correct. Explanations may vary; for example: The equation can be represented by a partwhole bar model where the whole is 36, one part is f and the other part is 16. f can therefore be worked out by finding 36 16, which equals 20.



- **5.** a) Equation: 10a = 2
 - Solution: $a = 10 \div 2 = 0.2$
 - b) Equation: 1.5b = 150
 - Solution $b = 150 \div 1.5 = 100$
 - c) Equation: $c \div 10 = 2$
 - Solution: $c = 2 \times 10 = 20$
 - d) Equation: d 90.9 = 909.09
 - Solution: d = 909.09 + 90.9 = 999.99

Reflect

- Solution: y = 125
- Methods will vary; for example:
- Method 1: writing the equation as a bar model and using the inverse of +75 to subtract 75, i.e. 200 75 = 125 = y. Method 2 could involve substituting in different values of y until finding that when y = 125, y + 75 = 200.

Lesson 8: Solving equations (2)

→ pages 85-87

- **1.** a) x + 25 = 40
 - Subtract 25 from each scale.
 - x = 15
 - b) 3c = 150
 - ÷ each side by 3
 - c = 50
 - c) a + 45 = 100
 - 100 45 = 55
 - a = 55
 - d) 5d = 150
 - $150 \div 5 = 30$
 - d = 30
- **2.** a) \rightarrow c 25 = 50
 - c = 75
 - b) \Rightarrow 25 = 5c
 - c = 5
 - c) \Rightarrow 25 + c = 50
 - c = 25
- **3.** a) f = 3
- d) i = 250
- b) g = 2.5
- e) j = 36
- c) h = 363
- f) k = 1
- **4.** Answers will vary; for example:
 - y + 8 = 10y = 2
- $80 \div y = 8$ y = 10
- 24 y = 10
- $80 \times y = 240$
- y = 14
- y = 3

Reflect

- Answers will vary; for example:
- Bar model where the whole is 100, one part is *x* and the other part is 90.
- Other diagrams could include balance scales with 100 on one side and 90 and *x* on the other.

Lesson 9: Solving equations (3)

→ pages 88-90

- **1.** a) 3a + 2 = 17
 - -2 -2
 - 3a = 15
 - ÷ 3 ÷ 3
 - a = 5
 - b) 4b + 80 = 100
 - b = 20
- **2.** 50 = 15 + 5*c*
 - 35 = 5c
 - c = 7
- **3.** 3y + 5 = 80
 - 3y = 75
 - y = 25
- **4.** 6n + 3 = 50 + 1
 - 6n + 3 = 51
 - 6n = 48n = 8
- **5.** a) *a* = 20
 - b) c = 65
- c) b = 14d) d = 15
- **6.** a) $(x \div 5) 5 = 6$
 - $x \div 5 = 11$
 - x = 55
 - b) $(z + 20) \times 10 = 1,000$
 - z + 20 = 100
 - z = 80

Reflect

25 !							
X	х	X	X	X	5		

Lesson IO: Solving equations (4)

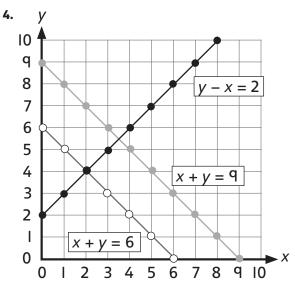
→ pages 91–93

- Perimeter j = ? k = ?12 cm I cm 5 cm I2 cm 2 cm 4 cm I2 cm 3 cm 3 cm 4 cm I2 cm 2 cm I2 cm 5 cm I cm
 - b) The greatest area, of 9 cm², occurs when j = 3 cm and k = 3 cm.
- **2.** Equation: a + b = 4
 - Table completed showing pairs that total 4 kg. Answers may vary; for example:

a = ?	b = ?
l kg	3 kg
2 kg	2 kg
3 kg	I kg
3 ½ kg	½ kg
0·6 kg	3·4 kg

3. Equation: $e \times f = 100$. All possible solutions should be shown (may be in different order):

e = ?	f = ?
l m	100 m
2 m	50 m
4 m	25 m
5 m	20 m
10 m	10 m
20 m	5 m
25 m	4 m
50 m	2 m
100 m	l m



- **5.** a) The four numbers must be 1, 3, 5 and 11 or 1, 3, 7 and 9 (but be added in any order giving 24 calculations for each set).
 - b) There are 14 possible calculations:

c. c a. c I . p c.	
1 + 2 - 1	5 + 4 – 7
3 + 2 - 3	7 + 4 – 9
5 + 2 - 5	1 + 6 - 5
7 + 2 - 7	3 + 6 - 7
9 + 2 - 9	5+6-9
1 + 4 - 3	1 + 8 - 7
3 + 4 – 5	3 + 8 - 9

Reflect

Answers will vary; for example:

Drawing a table helps, particularly if you list possibilities methodically starting either at the lowest or highest, finishing when the numbers start to repeat.

Lesson II: Solving equations (5)

→ pages 94-96

- 1. Two possible solutions:
 - $3 \times 5p$ and $5 \times 2p$ $1 \times 5p$ and $10 \times 2p$ 25p could also be made using $5 \times 5p$ coins but this would not match the criteria since Alex also has 2p coins
- **2.** Assuming lengths are whole numbers, there are six possible solutions:

$$a = 1 \text{ cm}, b = 11 \text{ cm (area} = 11 \text{ cm}^2)$$

$$a = 11 \text{ cm}, b = 1 \text{ cm (area} = 11 \text{ cm}^2)$$

$$a = 2$$
 cm, $b = 10$ cm (area = 20 cm²)

$$a = 10 \text{ cm}, b = 2 \text{ cm (area} = 20 \text{ cm}^2)$$

$$a = 3 \text{ cm}, b = 9 \text{ cm (area} = 27 \text{ cm}^2)$$

$$a = 9 \text{ cm}, b = 3 \text{ cm (area} = 27 \text{ cm}^2)$$

3. Equation: 4b + 8r = 32

$$b = 8, r = 0$$
 $b = 6, r = 1$ $b = 4, r = 2$

$$b = 2, r = 3$$
 $b = 0, r = 4$

4. a) 50a - 25b = 100. Solutions given will vary; for example:

$$a = 2$$
, $b = 0$: $100 - 0 = 100$

$$a = 3$$
, $b = 2$: $150 - 50 = 100$

$$a = 4$$
, $b = 4$: $200 - 100 = 100$

$$a = 5$$
, $b = 6$: $250 - 150 = 100$

$$a = 10$$
, $b = 16$: $500 - 400 = 100$

Pattern: For every 1 a goes up, b goes up 2.

b) 50 + c = d - 150. Solutions given will vary; for example:

$$c = 50$$
, $d = 250$: $50 + 50 = 250 - 150$

$$c = 100, d = 300: 50 + 100 = 300 - 150$$

$$c = 150$$
, $d = 350$: $50 + 150 = 250 - 150$

$$c = 0$$
, $d = 200$: $50 + 0 = 200 - 150$

$$c = 800, d = 1,000: 50 + 800 = 1,000 - 150$$

Pattern: c is always 200 smaller than d.

5. The only numbers less than 20 which are the sum of two square numbers are: 5, 10, 13 or 17. It is not possible to make a total of 11 by adding two prime numbers. Therefore, the combinations of possible choices with a difference of 1 are:

Bella	4 (2 + 2)	6 (3 + 3)	9 (2 + 7)	12 (5 + 7)	I4 (3 + II)	16 (5 + II)	18 (7 + II)
Danny	5 (1 + 4)	5 (1 + 4)	I0 (I + 9)	I3 (4 + 9)	13 (4 + 9)	17 (I + I6)	17 (1 + 16)

Reflect

Answers will vary; for example:

6x + 2y = 28

Solutions are x = 1, y = 11; x = 2, y = 8; x = 3, y = 5; x = 4, y = 2

End of unit check

→ pages 97-98

My journal

1 a) 3a + 5 = 20

Answers will vary; for example: Kate puts £5 in the bank, and saves a set amount each week. After 3 weeks she has £20. How much does she save each week?

b) 5b - 8 = 17

Answers will vary; for example: Kate saves a set amount each week. After 5 weeks she withdraws £8, leaving £17. How much does she save each week?

Power puzzle

There are 15 different types of rectangles:

 2×1 rectangles, 1×2 rectangles, 3×1 rectangles,

 1×3 rectangles, 4×1 rectangles, 1×4 rectangles,

 2×2 squares, 3×3 squares, 4×4 squares,

 2×3 rectangles, 3×2 rectangles, 2×4 rectangles,

 4×2 rectangles, 4×3 rectangles, 3×4 rectangles.