Unit 9: Algebra

Lesson I: Finding a rule (I)

\rightarrow pages 64-66

1. a)

Number of cakes	1	2	3	5	10	100	1,500
Number of stars	1×3 $=3$	2×3 $=6$	3×3 $=9$	5×3 $=15$	10×3 $=30$	100×3 $=300$	$1,500 \times 3=$ 4,500

b) For n fairy cakes, you need $n \times 3$ stars.

2. | Number
 of cakes | 5 | 6 | 12 | 20 | 101 | b |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number
 of stars | 25 | 30 | 60 | 100 | 505 | $b \times 5$ |

Children should draw a picture of fairy cake with 5 stars on it.
3. Patterns matched to rules:

Top pattern $\rightarrow n \times 4$
2nd pattern \rightarrow double n
3rd pattern $\rightarrow 3 \times n$
Bottom pattern $\rightarrow n \times 5$
4.

Minutes Zac has been painting	45	50	90	120	x
Minutes Kate has been painting	15	20	60	90	$x-30$

If Zac has been painting for x minutes, Kate has been painting for $x-30$ minutes.
If Kate has been painting for y minutes, Zac has been painting for $y+30$ minutes.
5. a) $b \times 8$
$x \times 3$
$m \times 7$
$k \times 52$
b) The number of days in d years is $365 \times d$.
6.

1	3	12	$15 \cdot 5$	x
5	7	16	$19 \cdot 5$	$x+4$

Either:
Rule to get from upper number to lower number is add 4.
Rule to get from lower number to upper number is subtract 4.

1	2	4	8	$2 \times y \div 5$
2.5	5	10	20	y

Either:
Rule to get from upper number to lower number is halve and multiply by 5 .
Rule to get from lower number to upper number is double and divide by 5 .

Reflect

Same: both rules involve the digit 5 .
Different: the first rule involves multiplying a by 5 and the second rule involves adding 5 to a.

Lesson 2: Finding a rule (2)

\rightarrow pages 67-69

1. a)

Week	1	2	3	5	10	11
Total savings	28	31	34	40	55	58

b) After y weeks, Olivia has saved $25+3 \times y$ pounds.
2. Number line showing jumps of $£ 4$ backwards from $£ 50$.

Week	1	2	3	5	10	n
Money left	46	42	38	30	10	$50-4 n$

After n weeks, he has $50-4 \times n$ pounds left.
3.

Number of triangles	1	2	3	4	5	10	100
Number of tticks used	3	5	7	9	11	21	201

To make 1 triangle, 3 sticks are used.
To make 2 triangles, 5 sticks are used.
To make 3 triangles, 7 sticks are used.
To make n triangle, $1+2 \times n$ sticks are used.
4. For g houses, you need $5+5 \times g$ sticks.
(Accept or equivalent expression; for example: $(g+1) \times 5)$
5. a) For n squares, you need $2 n+2$ circles.
$n=100$, so $2 n=200$
$2 n+2$ = 202 circles
b) Answers will vary; for example:

Two circles drawn in each square: For n squares, you need $2 n$ circles.

Reflect

Answers will vary; for example:
Emma puts $£ 100$ in a bank account and takes $£ 3$ out every week to pay for a trip to the swimming pool. After y weeks how much money is left in the account?

Lesson 3: Using a rule (I)

\rightarrow pages 70-72

1. a) If Richard has x guinea pigs, Luis has $x+2$ guinea pigs.
b) Bar model with six sections labelled $x, 2, x, 2, x, 2$ (can be in any order).
c) Ambika has 15 guinea pigs.
d)

	Number of guinea pigs				
Richard	1	2	5	10	20
Luis	3	4	7	12	22
Ambika	q	12	21	36	66

2. a)

Input	1	2	3	5	10
Output	5	10	15	25	50

If the input is a, the output is $5 \times a$ (which can be written as 5a).
b)

Input	1	2	3	5	10
Output	7	12	17	27	52

If the input is b, the output is $5 b+2$.
c) Outputs will vary as children choose own inputs, for example:

Input	1	2	3	5	10
Output	15	20	25	35	60

If the input is c, the output is $5(2+c)$ or $10+5 c$.
d) Outputs will vary as children choose own inputs; for example:

Input	1	2	3	5	10
Output	10	20	30	50	100

If the input is d, the output is 10 d .
3.

Input	1	2	5	100	1,000	a
Output for -10	-q	-8	-5	90	990	$a-10$
Output for $+5-15$	-q	-8	-5	90	990	$a+5=15$ $=a-10$

Yes, Max is correct since $a+5-15=a-10$.
4. a) and b) There are many possible pairs of operations; for example:
$+10 \times 5 ; \times 10 \times 10 ; \times 2+80$
Children should complete the table according to their functions; for example:
$+10 \times 5$ gives:

Input	10	20	30	40	x
Output	100	150	200	250	$5(x+10)$ or $5 x+50$

Reflect

No, Emma is not correct.
When $x=100: 3 x+2=300+2=302$
When $x=10: 3 x+2=30+2=32$
$32 \times 10=320$ which is not 302 , Emma's suggestion does not work.

Reasons will vary; for example: Using the rule on $x=10$ gives $(3 \times 10)+2$. When you then multiply this answer by 10 , this gives $3 \times 100+20$. This is not the same as the required output of $3 \times 100+2$.

Lesson 4: Using a rule (2)

\rightarrow pages 73-75

1. a) The total value is $5 n$ pence.

b) | Number of coins | Reena's total value |
| :--- | :--- |
| 4 | $5 p \times 4=20 p$ |
| 5 | $5 p \times 5=25 p$ |
| 10 | $5 p \times 10=50 p$ |
| 30 | $5 p \times 30=150 p$ |
| 50 | $5 p \times 50=250 p$ |

2. a) Hiring of the court costs $20 n$ pence (for n minutes).

b) | Time in minutes | Cost |
| :--- | :--- |
| n | $20 p \times n=20 p n$ |
| 10 | $20 p \times 10=200 p(=£ 2)$ |
| 30 | $20 p \times 30=600 p(=£ 6)$ |
| 60 | $20 p \times 60=1,200 p(=£ 12)$ |
| 120 | $20 p \times 120=2,400 p(=£ 24)$ |

3.

	$x+\mathbf{3 0}$	$30-x$	$30 x$
$x=5$	35	25	150
$x=10$	40	20	300
$x=30$	60	0	900
$x=0$	30	30	0

4. No, the order of the operations matters.

If Aki adds 5 then multiplies by 10 he would get
$(7+5) \times 10=12 \times 10=120$.
The correct answer is $(7 \times 10)+5=70+5=75$.
5. If y is an even number then $5 y$ will be a multiple of 10 so $100-5 y$ will be a multiple of 10 .
6. When $y=1,10 y-y=9$.

Other examples will vary, depending on the choice of y but $10 y-y$ will always be equal to $9 y$. Diagrams could include bar models split into 10 sections marked y with one subtracted.

Reflect

Answers will vary; for example:
$y=1: 4+2 y=6$
$y=5: 4+2 y=14$
Doubling any whole number gives an even number, so $2 y$ is always even. 4 is even and when you add two even numbers together the answer will also be even. So, the rule $4+2 y$ always generates even numbers.

Lesson 5: Using a rule (3)

\rightarrow pages 76-78

1. a) Length of ribbon left is $100-5 y$.
b) There is 40 cm of ribbon left.
2. a) The total height is $15+10 n$.
b) $15+10 \times 8=15+80$

The height is 80 cm .
3. a) $\mathrm{A}: a+50, \quad \mathrm{C}: \frac{\mathrm{a}}{4}$ or $a \div 4$

B: $a-50 \quad \mathrm{D}: 50+3 a$
b) $A=125 \quad B=25 \quad C=18.75 \quad D=275$
4. Equivalent expressions matched:

5 less than $y \rightarrow y-5$
y more than $20 \rightarrow 20+y$
double $y \rightarrow 2 y$
5.

Reflect

When $y=3,25-2 y=25-6=19$
Bar models may vary; for example:

Lesson 6: Formulae

\rightarrow pages 79-81

1. a) Formula: $3 a$

Perimeter $=12 \mathrm{~cm}$
b) Formula: $4 a$

Perimeter $=16 \mathrm{~cm}$
2. Tower $A=1,200$ inches

Tower B = 2,400 inches
Tower $C=1,800$ inches
3. $200 \times 48=9,600$

The rocket has travelled 9,600 miles.
c) Formula: $2 a+2 b$

Perimeter $=18 \mathrm{~cm}$
d) Formula: $4 a+4 b$

Perimeter $=36 \mathrm{~cm}$
5. a) Equation: $10 a=2$

Solution: $a=10 \div 2=0.2$
b) Equation: $1 \cdot 5 b=150$

Solution $b=150 \div 1 \cdot 5=100$
c) Equation: $c \div 10=2$

Solution: $c=2 \times 10=20$
d) Equation: $d-90.9=909.09$

Solution: $d=909.09+90.9=999.99$

Reflect

Solution: $y=125$
Methods will vary; for example:
Method 1: writing the equation as a bar model and using the inverse of +75 to subtract 75 , i.e. $200-75=125=y$. Method 2 could involve substituting in different values of y until finding that when $y=125, y+75=200$.

Lesson 8: Solving equations (2)

\rightarrow pages 85-87

1. a) $x+25=40$

Subtract 25 from each scale.
$x=15$
b) $3 c=150$
\div each side by 3

$$
c=50
$$

c) $a+45=100$

$$
100-45=55
$$

$$
a=55
$$

d) $5 d=150$
$150 \div 5=30$

$$
d=30
$$

2. a) $\rightarrow c-25=50$

$$
c=75
$$

b) $\rightarrow 25=5 c$

$$
c=5
$$

c) $\rightarrow 25+c=50$

$$
c=25
$$

3. a) $f=3$
d) $i=250$
b) $g=2 \cdot 5$
e) $j=36$
c) $h=363$
f) $k=1$
4. Answers will vary; for example:

$$
\begin{array}{ll}
y+8=10 & 80 \div y=8 \\
y=2 & y=10 \\
24-y=10 & 80 \times y=240 \\
y=14 & y=3
\end{array}
$$

Reflect

Answers will vary; for example:
Bar model where the whole is 100, one part is x and the other part is 90 .
Other diagrams could include balance scales with 100 on one side and 90 and x on the other.

Lesson $9:$ Solving equations (3)

\rightarrow pages 88-90

1. a) $3 a+2=17$

$$
\begin{array}{cc}
-2 & -2 \\
3 a=15 \\
\div 3 \div 3 \\
a \quad=5
\end{array}
$$

b) $4 b+80=100$

$$
b=20
$$

2. $50=15+5 c$
$35=5 c$
$c=7$
3. $3 y+5=80$
$3 y=75$
$y=25$
4. $6 n+3=50+1$
$6 n+3=51$
$6 n=48$

$$
n=8
$$

5. a) $a=20$
c) $b=14$
b) $c=65$
d) $d=15$
6. a) $(x \div 5)-5=6$

$$
\begin{array}{r}
x \div 5=11 \\
x=55
\end{array}
$$

b) $(z+20) \times 10=1,000$

$$
\begin{aligned}
z+20 & =100 \\
z & =80
\end{aligned}
$$

Reflect

Lesson IO: Solving equations (4)

\rightarrow pages 91-93

1. a)

Perimeter	$j=\boldsymbol{e}$	$\boldsymbol{k}=\boldsymbol{?}$
12 cm	1 cm	5 cm
12 cm	2 cm	4 cm
12 cm	3 cm	3 cm
12 cm	4 cm	2 cm
12 cm	5 cm	1 cm

b) The greatest area, of $9 \mathrm{~cm}^{2}$, occurs when $j=3 \mathrm{~cm}$ and $k=3 \mathrm{~cm}$.
2. Equation: $a+b=4$

Table completed showing pairs that total 4 kg . Answers may vary; for example:

$a=?$	$b=?$
1 kg	3 kg
2 kg	2 kg
3 kg	1 kg
$3 \frac{1}{2} \mathrm{~kg}$	$\frac{1}{2} \mathrm{~kg}$
0.6 kg	3.4 kg

3. Equation: $e \times f=100$.

All possible solutions should be shown (may be in different order):

$e=?$	$f=?$
1 m	100 m
2 m	50 m
4 m	25 m
5 m	20 m
10 m	10 m
20 m	5 m
25 m	4 m
50 m	2 m
100 m	1 m

5. a) The four numbers must be $1,3,5$ and 11 or $1,3,7$ and 9 (but be added in any order giving 24 calculations for each set).
b) There are 14 possible calculations:
1+2-1
$5+4-7$
$3+2-3$
$7+4-9$
$5+2-5 \quad 1+6-5$
$7+2-7 \quad 3+6-7$
$9+2-9 \quad 5+6-9$
$1+4-3 \quad 1+8-7$
$3+4-5 \quad 3+8-9$

Reflect

Answers will vary; for example:
Drawing a table helps, particularly if you list possibilities methodically starting either at the lowest or highest, finishing when the numbers start to repeat.

Lesson II: Solving equations (5)

\rightarrow pages 94-96

1. Two possible solutions:
$3 \times 5 p$ and $5 \times 2 p \quad 1 \times 5 p$ and $10 \times 2 p$
25 p could also be made using 5×5 p coins but this would not match the criteria since Alex also has $2 p$ coins.
2. Assuming lengths are whole numbers, there are six possible solutions:
$a=1 \mathrm{~cm}, b=11 \mathrm{~cm}$ (area $=11 \mathrm{~cm}^{2}$)
$a=11 \mathrm{~cm}, b=1 \mathrm{~cm}\left(\right.$ area $\left.=11 \mathrm{~cm}^{2}\right)$
$a=2 \mathrm{~cm}, b=10 \mathrm{~cm}$ (area $=20 \mathrm{~cm}^{2}$)
$a=10 \mathrm{~cm}, b=2 \mathrm{~cm}$ (area $=20 \mathrm{~cm}^{2}$)
$a=3 \mathrm{~cm}, b=9 \mathrm{~cm}$ (area $=27 \mathrm{~cm}^{2}$)
$a=9 \mathrm{~cm}, b=3 \mathrm{~cm}$ (area $=27 \mathrm{~cm}^{2}$)
3. Equation: $4 b+8 r=32$

There are 5 possible solutions:

$$
\begin{array}{lll}
b=8, r=0 & b=6, r=1 & b=4, r=2 \\
b=2, r=3 & b=0, r=4 &
\end{array}
$$

4. a) $50 a-25 b=100$. Solutions given will vary; for example:
$a=2, b=0: 100-0=100$
$a=3, b=2: 150-50=100$
$a=4, b=4: 200-100=100$
$a=5, b=6: 250-150=100$
$a=10, b=16: 500-400=100$
Pattern: For every $1 a$ goes up, b goes up 2 .
b) $50+c=d-150$. Solutions given will vary; for example:
$c=50, d=250: 50+50=250-150$
$c=100, d=300: 50+100=300-150$
$c=150, d=350: 50+150=250-150$
$c=0, d=200: 50+0=200-150$
$c=800, d=1,000: 50+800=1,000-150$
Pattern: c is always 200 smaller than d.
5. The only numbers less than 20 which are the sum of two square numbers are: $5,10,13$ or 17 . It is not possible to make a total of 11 by adding two prime numbers. Therefore, the combinations of possible choices with a difference of 1 are:

Bella	$4(2+2)$	$6(3+3)$	$9(2+7)$	$12(5+7)$	$14(3+11)$	$16(5+11)$	$18(7+11)$
Danny	$5(1+4)$	$5(1+4)$	$10(1+9)$	$13(4+9)$	$13(4+9)$	$17(1+16)$	$17(1+16)$

Reflect

Answers will vary; for example:
$6 x+2 y=28$
Solutions are $x=1, y=11 ; x=2, y=8 ; x=3, y=5 ; x=4, y=2$

End of unit check

\rightarrow pages 97-98

My journal

1 a) $3 a+5=20$
Answers will vary; for example:
Kate puts $£ 5$ in the bank, and saves a set amount each week. After 3 weeks she has $£ 20$. How much does she save each week?
b) $5 b-8=17$

Answers will vary; for example:
Kate saves a set amount each week. After 5 weeks she withdraws $£ 8$, leaving $£ 17$. How much does she save each week?

Power puzzle

There are 15 different types of rectangles:
2×1 rectangles, 1×2 rectangles, 3×1 rectangles,
1×3 rectangles, 4×1 rectangles, 1×4 rectangles,
2×2 squares, 3×3 squares, 4×4 squares,
2×3 rectangles, 3×2 rectangles, 2×4 rectangles,
4×2 rectangles, 4×3 rectangles, 3×4 rectangles .

