Unit 8: Percentages
 Lesson I: Percentage of (I)

\rightarrow pages 35-37

1. a) 40
c) 15
e) 48
b) 20
d) 150
f) 4.8
2. a) 20 yellow squares, 10 red squares and 4 blue squares.
b) 10 yellow triangles, 5 red triangles and 2 blue triangles.
3. a) $£ 6$
c) $£ 2.50$
b) $£ 7.50$
d) $£ 11.25$
4. a) $2 \mathrm{~kg}=2,000 \mathrm{~g}$

Pineapple: 25% of $2 \mathrm{~kg}=500 \mathrm{~g}$
Bananas: 10% of $2 \mathrm{~kg}=200 \mathrm{~g}$
Apples: 2,000-500-200=1,300 g
$1,300-200=1,100 \mathrm{~g}$
Emma bought 1,100 more grams of apples than bananas.
b) Aki: $1 \frac{1}{2} \mathrm{~kg}=1,500 \mathrm{~g}$
25% of $1,500 \mathrm{~g}=375 \mathrm{~g}$
Bella: $3 \frac{1}{2} \mathrm{~kg}=3,500 \mathrm{~g}$
10% of $3,500 \mathrm{~g}=350 \mathrm{~g}$
375 > 350
Aki bought more potatoes.
5. 50% of $50=25 \quad 25 \%$ of $50=12 \cdot 5 \quad 10 \%$ of $30=3$
50% of $5=2 \cdot 5 \quad 25 \%$ of $500=125 \quad 10 \%$ of $300=30$
50% of $0.5=0.2525 \%$ of $1,000=25010 \%$ of $3=0.3$
6. Saturday: 50% of $£ 40=£ 20$
$£ 40-£ 20=£ 20$
Sunday: $\quad 10 \%$ of $£ 20=£ 2$
$£ 20-£ 2=£ 18$
Monday: 25% of $£ 18=£ 4.50$
$£ 18-£ 4.50=£ 13.50$
$£ 13.50-£ 5.75=£ 7.75$
Richard has $£ 7.75$ left.

Reflect

Answers will vary; for example:
A bar model (whole labelled as 100\%) divided into 10 equal parts (labelled 10\%).
To find 10% of a number divide by 10 .

Lesson 2: Percentage of (2)

\rightarrow pages 38-40

1. a)

2. Calculations completed and matched:
1% of $300=3 \rightarrow 300 \div 100=3$
10% of $3,000=300 \rightarrow \frac{1}{10}$ of $3,000=300$
1% of $30=0.3 \rightarrow 30 \div 100=0.3$
10% of $300=30 \rightarrow$ place value grid showing $\frac{1}{10}$ of 300 is 30
3. a) 1% of $1,200=12$

There are 12 Green Goblins.
b) $12 \times 3=36$
3% of $1,200=36$
There are 36 Sapphire Specials.
4. a) 10% is $£ 150$.
1% is $£ 15$.
2% is $£ 30$.
3% is $£ 45$.
b) 10% is 15 m
c) 10% is 1.5 kg . 1% is 1.5 m . 1% is 150 g . 3% is 450 g . 6% is 900 g .
5. 2% of $600=12$
10% of $56=5 \cdot 6$
3% of $250=7.5$
25% of $18=4.5$
1% or $500=5 \cdot 5$
7% of $100=7$
$\begin{array}{llllll}\text { Least } 4.5 & 5.5 & 5.6 & 7 & 7.5 & 12 \text { Greatest }\end{array}$
6. a) Yes; 1% of 200 is 2 and 3% is 6.1% of 300 is 3 and 2% is 6.
b) Examples will vary; for example:
5% of 200 is 10 and 2% of 500 is 10
20% of $1,000=200 ; 10 \%$ of $2,000=200$
Children should notice that the answers are always equal.

Reflect

Children should explain that to work out 3\% of any number, first find 1% by dividing by 100 and then find 3% by multiplying 1% by 3 . Diagrams may vary; for example: hundredths grid with 3 squares shaded.

Lesson 4: Percentage of (4)

\rightarrow pages 44-46

1. a) 30% of $£ 400=£ 120$

Each section of bar model is 40 .
$400 \div 10=40$
$40 \times 3=120$
b) 60% of $400 \mathrm{~g}=240 \mathrm{~g}$

400 on top of bar model; each section is 40 .
c) 90% of $500 \mathrm{~m}=450 \mathrm{~m}$

Each section of bar model is 50 .
d) 75% of $£ 60=£ 45$

Whole is $£ 60$
Bar model split into 4 equal sections of $£ 15$.
2. There are 24 red tulips.

There are 12 yellow tulips.
There are 204 pink tulips.
3. a) 50% of $700=350$
10% of $700=70$
1% of $700=7$

4. 11% of $32,500=3,575 \quad 29 \%$ of $32,500=9,425$ $32,500-3,575-9,425=19,500$
19,500 people finished the marathon.
5. Area of pitch: $100 \mathrm{~m} \times 70 \mathrm{~m}=7,000 \mathrm{~m}^{2}$

Monday: $\quad 30 \%$ of $7,000 \mathrm{~m}^{2}=2,100 \mathrm{~m}^{2}$
Tuesday: $\quad 7,000-2,100 \mathrm{~m}^{2}=4,900 \mathrm{~m}^{2}$ 50% of $4,900 \mathrm{~m}^{2}=2,450 \mathrm{~m}^{2}$
Wednesday: $1,250 \mathrm{~m}^{2}$
Thursday: $\quad 7,000-2,100-2,450-1,250=1,200 \mathrm{~m}^{2}$ 1,200 square metres of the pitch still needed mowing on Thursday.

Reflect

Methods will vary; for example:
10% of $300=30,5 \%$ of $300=15$.
So 80% of $300=8 \times 30=240$, then add 5% to give 85% of $300=240+15=255$.
10% of $300=30,5 \%$ of $300=15$. So 15% of $300=45$.
$85 \%=100 \%-15 \%$, so 85% of $300=300-45=255$.

Lesson 5: Finding missing values

\rightarrow pages 47-49

1. a) 50% of $76=38$

$38 \times 2=76$
b) 25% of $64=16$

$$
16 \times 4=64
$$

c) 10% of $15=1.5$

1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

$$
1.5 \times 10=15
$$

2. 40% of $60=24 \rightarrow$ left-hand bar model with 24 in empty box
40% of $150=60 \rightarrow$ right-hand bar model with 150 as whole
3. а) $70 \%=63$, so $100 \%=90$
30% of $90=27$
There are 27 orange sweets.
b) The string was 320 cm long before Amelia cut it.
4. a) 420
b) 600
5. a) 10% of $90=9$
20% of $45=9$
30% of $30=9$
b) 30% of $300=90$
30% of $600=180$
30% of $6,000=1,800$
c) 60% of $150=90$
60% of $75=45$
60% of $7 \cdot 5=4 \cdot 5$
6. $45 \mathrm{~cm}=15 \%$ of length, so $15 \mathrm{~cm}=5 \%$ of length, so total length $=15 \mathrm{~cm} \times 20=300 \mathrm{~cm}$.
So, perimeter is
$20 \mathrm{~cm}+300 \mathrm{~cm}+20 \mathrm{~cm}+300 \mathrm{~cm}=640 \mathrm{~cm}$
The perimeter of the whole rectangle is 640 cm .

Reflect

Diagrams will vary; for example:
Two bar models, one with 45 as the whole and split into 5 equal sections of 9 , other model with 225 as the whole and split into 5 equal sections of 45 .

Lesson 6: Converting fractions to percentages

\rightarrow pages 50-52

1. a) $\frac{3}{20}=\frac{15}{100}=15 \%$
c) $\frac{13}{50}=\frac{26}{100}=26 \%$
b) $\frac{4}{25}=\frac{16}{100}=16 \%$
d) $\frac{4}{40}=10 \%$
2. $\frac{19}{20}=\frac{95}{100}=\rightarrow 95 \%$
$\frac{19}{25}=\frac{76}{100}$ (numerator and denominator multiplied by 4)
$\rightarrow 76 \%$
$\frac{19}{50}=\frac{38}{100}=\rightarrow 38 \%$
3. Luis: $\frac{14}{20}=\frac{7}{10}=70 \%$

Kate: $\frac{28}{40}=\frac{7}{10}=70 \%$
Both scored 70\%.

Week	Number of eggs laid	Number of eggs that hatched	Percentage of eggs hatched
Week I	10	6	$\frac{6}{10}=60 \%$
Week 2	20	6	$\frac{6}{20}=30 \%$
Week 3	8	6	$\frac{6}{8}=75 \%$
Week 4	12	6	$\frac{6}{12}=50 \%$

6. blue $=\frac{42}{200}=21 \%$
grey $=\frac{60}{200}=30 \%$
black $=\frac{40}{200}=20 \%$
white $=\frac{44}{200}=22 \%$
yellow $=\frac{14}{200}=7 \%$

Reflect

Methods may vary; for example:
Multiply numerator and denominator by 4 since $4 \times 25=100$ to make the fraction have a denominator of 100 and then write the numerator as the percentage, i.e. $\frac{3}{25}=\frac{12}{100}=12 \%$.

Lesson 7: Equivalent fractions, decimals and percentages (I)

\rightarrow pages 53-55

1. Equivalent decimals, fractions and percentages completed:

2. a) $0 \cdot 39=\frac{39}{100}=39 \%$
b) $0.25=\frac{1}{4}\left(=\frac{25}{100}\right)=25 \%$
c) $0 \cdot 4=\frac{2}{5}\left(=\frac{40}{100}\right)=40 \%$
d) $1 \cdot 00=\frac{100}{100}=100 \%$
3. Amounts matched:
$\frac{17}{100} \rightarrow 0.17$
$\frac{7}{100} \rightarrow 0.07$
$70 \% \rightarrow 0.7$
$71 \% \rightarrow 0.71$

Percentage	Decimal	Fraction
66%	0.66	$\frac{66}{100}=\frac{33}{50}$
60%	0.6	$\frac{60}{100}=\frac{6}{10}=\frac{3}{5}$
9%	0.09	$\frac{9}{100}$
0%	0	0
90%	0.9	$\frac{9}{10}$

5. To convert a decimal to a percentage you write the digit in the tenths and hundredths columns as the percentage, so for decimals written to 2 decimal places (2 dp) Jamie is correct, but for decimals with more than 2 dp , you insert a decimal point after the second digit and then write the digits in the thousandths column after the decimal point, i.e. $0 \cdot 125$ as a percentage is 12.5%.
6. $0.5 \times 54=50 \%$ of $54=27$ $0.1 \times 54=10 \%$ of $54=5.4$
7. a) $\frac{12}{20}=60 \%$
b) $\frac{8}{16}=50 \%$
$540 \times 0.2=20 \%$ of $540=108$
$0.75 \times 54=75 \%$ of $54=40.5$
$540 \times 0.25=25 \%$ of $540=135$
$5,400 \times 0.99=99 \%$ of $5.400=5,346$

Reflect

Estimates will vary; for example:
$\frac{2}{3}=0.666$ (recurring) $=66.6$ (recurring) $\%$
$\frac{7}{10}=0.7=70 \%$

Lesson 8: Equivalent fractions, decimals and percentages (2)

\rightarrow pages 56-58

1. a) $\frac{4}{5}<85 \%$
b) $0.404>\frac{100}{250}$
c) $99 \%<\frac{199}{200}$
2. $\frac{88}{1,000}=0.088$
3. $\frac{3}{10}<0.55<57 \%<61 \%<0.62<\frac{17}{25}<\frac{41}{50}$
4. $1 \cdot 8=1 \frac{8}{10}=1 \frac{16}{20}$, so $1 \cdot 8$ is not more than $1 \frac{17}{20}$.
5. a) 65%
b) 0.36
c) $\frac{1}{5,000}\left(=\frac{1}{200}\right)$
6. a) Diagrams will vary.

Lexi has eaten $\frac{8}{9}$ of an apple altogether.
$\frac{8}{9}=0.888=88.89 \%$ (rounded to 2 dp)
Ebo has eaten 87% of an apple.
$88.89>87$.
Lexi has eaten the most apple.
b) Answers will vary; for example: Jamie eats $\frac{2}{9}$ of 2 oranges, Max has eaten 51% of an orange. Who has eaten the most orange?

Reflect

Answers will vary but children should recognise that it is easier to order numbers if they are in the same form. For example:
To order fractions, decimals and percentages they could all be converted to equivalent percentages and then put in order from smallest to greatest.

Lesson 9: Mixed problem solving

\rightarrow pages 59-61

1. a) $\frac{80}{200}=\frac{2}{5}$
b) $\frac{160}{400}=\frac{2}{5}$
c) $\frac{80}{200}=\frac{2}{5}$
d) $\frac{80}{400}=\frac{1}{5}$
e) Answers will vary, but designs should have 3 white tiles for every tile with 40% shaded.
2. a) This is $\frac{1}{2}$ of the whole shape.
b) Designs will vary but have an area of 5 squares.
3.

The grapes weigh 750 g .
4. Richard has 60%, which is $40 \%+£ 25$.
$100 \%=40 \%+40 \%+£ 25$
$100 \%=80 \%+£ 25$
$100 \%-80 \%=£ 25$
$20 \%=£ 25$
$60 \%=£ 25 \times 3=£ 75$
Richard has $£ 75$.
5. The first percentage represents 45 out of 100 and the second score is 50 out of 100 .
$\frac{45}{100}+\frac{50}{100}=\frac{95}{200}=47.5 \%$
6. 50% of the left-hand shape is shaded. 50% of the rectangles are shaded and 50% of the circles are shaded, so in total 50% are shaded. 25% of the right-hand shape is shaded. The shape is made up of three sections which each contain 4 of the same shape. 1 out of 4 equal shapes in each section is shaded, so $\frac{1}{4}$ of each section is shaded. So $\frac{1}{4}$, or 25%, of the whole shape is shaded.

Reflect

Answers will vary but the problem should involve 20\% in some way; for example:
Bella has $£ 40$ and spends $\frac{4}{5}$. How much has she left?

End of unit check

\rightarrow pages 62-63

My journal

1. a) Answers will vary; look for the shape being divided into other shapes. Children may shade 25% of each shape or 25% of the shape as a whole. .
b) Answers will vary, but the equivalent of one full section (representing 20\%) and $\frac{3}{4}$ of another section (representing 15\%) should be shaded.

Power play

of	900	170	260	25	1
10%	90	17	26	2.5	0.1
1%	9	1.7	2.6	0.25	0.01
75%	675	127.5	195	18.75	0.75
100%	900	170	260	25	1
99%	891	168.3	257.4	24.75	0.99

