Unit 7: Decimals

Lesson I: Multiplying by IO, 100 and 1,000

\rightarrow pages 6-8

1. a) $1 \cdot 3 \times 10=13 ; 1$ counter in tens column and 3 counters in ones column.
b) $3.03 \times 10=30 \cdot 3 ; 3$ counters in tens column and 3 counters in tenths column.
2. a) 1,$008 ; 1$ st box ticked.
b) $8,103,2 n d$ box ticked.
c) $0.012 \times 1,000=12$
3. a) $1 \cdot 1 \times 10=11$
$1.2 \times 10=12$
$1.02 \times 10=10.2$
$102=1.02 \times 100$
b) $9,990=99.9 \times 100$
$99,990=999.9 \times 100$
$0.999 \times 100=99.9$
$9.999 \times 1,000=9,999$
c) $2.5 \times 10=25$
$2.5 \times 20=50$
$2.5 \times 200=500$
$2.5 \times 2,000=5,000$
4. a) The total cost of the order will be $£ 600$.
b) The total mass of all the bricks is $1,000 \mathrm{~kg}$.
5. $5.02 \times 100=502$

Explanations will vary; for example, children could show 5.02 with counters on a place value grid and move counters two columns to the left to represent multiplying by 100 to give 502 .
6. a) $0.025 \times 100=10 \times 0.25$
$1,000 \times 1.01=101 \times 10$
$0.09 \times 1,000=10 \times 9$
$3.5 \times 40=400 \times 0.35$
$2.5 \times 200=5 \times 100$
$5,000 \times 0.03=50 \times 3$
b) Answers will vary but triangle should be $10 \times$ star in each case; for example:

	Solution $\mathbf{1}$	Solution $\mathbf{2}$	Solution $\mathbf{3}$	Solution $\mathbf{4}$	Solution $\mathbf{5}$	Solution $\mathbf{6}$	Solution $\mathbf{7}$
\boldsymbol{A}	10	100	20	30	40	50	200
$\boldsymbol{\star}$	1	10	2	3	4	5	20

Reflect

Answers will vary but check children recognise that multiplying by 10,100 and 1,000 involves exchanging on a place value grid and that the digits move to the left on the grid: once for $\times 10$, twice for $\times 100$ and three times for $\times 1,000$.

Lesson 2: Dividing by multiples of 10,100 and I,000

\rightarrow pages 9-11

1. a) $1 \cdot 7$
b) $0 \cdot 15$
2. The tap loses 1.25 litres of water each day.
3. 2.05 ; tick bottom left-hand image.
4. $0.4 \div 10=0.04$
5. $30 \cdot 6 \div 100=0.306 \quad 3.6 \div 10=0.36 \quad 36 \div 1,000=0.036$
6. a) 1.2
b) 0.04
c) 1.2
0.8
0.06
0.8
0.6
0.08
0.6
$0.4 \quad 0.03$
7. Completed divisions to say:
$206 \div 1,000=0.206$
$26 \div 1,000=0.026$
$260 \div 100=2 \cdot 6$
$20.6 \div 10=2.06$
$2.6 \div 100=0.026$
$2.06 \div 10=0.206$

Reflect

Answers will vary; for example: Danny has a rope that is 5.7 m in length and wants to cut 10 equal pieces. How long should each piece be? $(5.7 \div 10=0.57)$

Lesson 3: Decimals as fractions

\rightarrow pages 12-14

1. a) 0.007 is equivalent to $\frac{7}{1,000}$
b) 0.131 is equivalent to $\frac{131}{1,000}$
c) 0.997 is equivalent to $\frac{997}{1,000}$
d) 0.51 is equivalent to $\frac{51}{100}$
2. $\frac{900}{1,000}=0.9 \quad \frac{15}{100}=0.15 \quad \frac{3}{10}=0.3$

3. $0 \cdot 3 \rightarrow \frac{300}{1,000}$
$0.03 \rightarrow \frac{30}{1,000}$
$0.33 \rightarrow \frac{33}{100}$
$0.303 \rightarrow \frac{303}{1,000}$
$3.3 \rightarrow \frac{33}{10}$
$0.003 \rightarrow \frac{3}{1,000}$
4. a) $0.04=\frac{4}{100}=\frac{1}{25}$
c) $0.04=\frac{4}{1,000}=\frac{1}{250}$
b) $0.05=\frac{5}{100}=\frac{1}{20}$
d) $0.005=\frac{5}{1,000}=\frac{1}{200}$
$\begin{array}{ll}\text { 5. a) Circled: } 1 \frac{823}{1,000} & \text { b) Circled: } \frac{17}{20}\end{array}$
5. a) Two possible answers:

$$
\begin{aligned}
& 0.1+0.02=\frac{3}{25}(=0.12) \\
& 0.105+0.015=\frac{3}{25}(=0.12)
\end{aligned}
$$

b) Two pairs:

$$
\begin{aligned}
& 2-1.98=\frac{5}{250}(=0.02) \\
& 1.02-1=\frac{5}{250}(=0.02)
\end{aligned}
$$

Reflect

Explanations will vary; for example:
0.555 is a decimal involving tenths, hundredths and thousandths; there are 5 tenths, 5 hundredths and 5 thousandths which are equivalent to 555 thousandths or $\frac{555}{1,000}$. Both 555 and 1,000 are divisible by 5 (they end in a 0 or a 5), so $\frac{555}{1,000}$ can be simplified to $\frac{111}{200}(111 \times 5=555$ and $200 \times 5=1,000$).

Lesson 4: Fractions as decimals (I)

\rightarrow pages 15-17

1. a)

0	\bullet	Tth	Hth	Thth
0	\bullet	0	3	

b)

0	\bullet	Tth	Hth	Thth
0	\bullet	3	4	

c)

O	\bullet	Tth	Hth	Thth
0	\bullet	0	0	3

d)

0	\bullet	Tth	Hth	Thth
0	\bullet	3	4	5

2. a) Circled: $7 \cdot 7$
b) Circled: $3 \cdot 7$
3. a) $\frac{2}{5}=0.4$
d) $\frac{4}{5}=0.8$
b) $\frac{8}{20}=0.4$
e) $\frac{11}{20}=0.55$
c) $\frac{17}{20}=0.85$
4. a) $\frac{1}{50}=\frac{2}{100}=0.02$
d) $\frac{3}{50}=\frac{6}{100}=0.06$
b) $\frac{3}{200}=\frac{15}{1,000}=0.515$
e) $\frac{99}{500}=\frac{198}{1,000}=0 \cdot 198$
c) $\frac{99}{250}=\frac{396}{1,000}=0.396$
5. Missing numbers:

6. Answers will vary; for example:

Between 0 and I	Between I and IO	Greater than IO
$\frac{2}{4}=0.5$	$\frac{500}{250}=2$	$\frac{500}{25}=20$
$\frac{2}{5}=0.4$	$\frac{500}{200}=2.5$	$\frac{250}{5}=50$
$\frac{2}{25}=0.08$	$\frac{25}{5}=5$	$\frac{50}{4}=12.5$
$\frac{5}{50}=0.1$	$\frac{200}{25}=8$	$\frac{200}{4}=50$

Reflect

Answers will vary; check that children recognise that in both cases they need to use equivalent fractions to either simplify a fraction or convert it to a fraction in tenths, hundredths, or thousandths. When writing fractions as tenths, hundredths or thousandths, the digits in the numerator are the same as the digits in the decimal. The difference is that when converting from decimals to fractions they need to simplify the fractions using division and common factors, whereas when converting from fractions to decimals they need to use multiplication so that they can write the fractions with 10,100 or 1,000 as a denominator (as appropriate).

Lesson 5: Fractions as decimals (2)

\rightarrow pages 18-20

1. $0 \cdot 80$
0.30
0.28
2. $A=\frac{1}{20}=0.05$
$C=\frac{9}{20}=0.45$
$B=\frac{3}{10}=0.3$
$D=\frac{6}{10}=0.6$
$\mathrm{E}=\frac{4}{10}=0.4$
$\mathrm{G}=\frac{28}{10}=2.8$
$F=\frac{12}{10}=1 \cdot 2$
$H=\frac{36}{10}=3.6$
3. $\frac{3}{12}=\frac{1}{4}$
$\frac{7}{50}=\frac{17}{100}$
$\frac{81}{250}=\frac{324}{1,000}$
$1 \div 4$
$17 \div 100$
$324 \div 1,000$
0.25
$0 \cdot 17$
$0 \cdot 324$
4. Children complete the three division calculations to work out:
$\frac{5}{8}=0.625 \quad \frac{5}{12}=0.4166 \ldots=0.417$ (to 3 dp) $\quad \frac{12}{5}=2.4$
5. a) $\frac{1}{6}=0 \cdot 166$ (to 3 dp)
c) $\frac{54}{1,000}=0.027$
b) $\frac{16}{80}=0.2$
d) $\frac{14}{24}=0.583$ (to 3 dp)
6. a) $\frac{1}{9}=1 \div 9$

$$
\frac{2}{9}=2 \div 9
$$

$9 \longdiv { 0 \cdot 1 1 1 1 . . . }$

$$
\begin{aligned}
& 0 \cdot 2 \quad \begin{array}{l}
0 \cdot 2 \\
2 \cdot{ }^{2} 0^{2} 0^{2} 0
\end{array}
\end{aligned}
$$

$\frac{3}{9}=3 \div 9$
$\frac{4}{9}=4 \div 9$
$9 \longdiv { 0 \cdot 3 3 3 } .$

$$
\begin{gathered}
9 \\
9 \\
9 \\
\hline
\end{gathered}
$$

b) Rounded to three decimal places:

$\frac{5}{9}=0.556$	$\frac{9}{9}=0.999 \ldots=1$
$\frac{6}{9}=0.667$	$\frac{10}{9}=1.111$
$\frac{7}{9}=0.778$	$\frac{11}{9}=1.222$
$\frac{8}{9}=0.889$	$\frac{19}{9}=1.111$

Reflect

Methods may vary; for example:
$\begin{array}{rrrr}0 & \cdot 6 \quad 2 \quad 5 \\ 8 & 5 \cdot{ }^{5} 0^{2} 0^{4} 0\end{array}$
So, $\frac{5}{8}=0.625$
$\frac{55}{100}=0.55$ (using decimal place value)
Comparing the tenths, 6 is more than 5 , so $\frac{5}{8}>0.55$.

Lesson 6: Multiplying decimals (I)

\rightarrow pages 21-23

1. $4 \times 0.2=0.8$
$3 \times 0.02=0.06$
2. a) $3 \times 0.3=0.9,2$ more jumps of 0.3 on the number line to show 0.6 and 0.9 :

b) $3 \times 0.03=0.09,3$ jumps of 0.03 on the number line to show $0.03,0.06$ and 0.09 :

3. Bella needs $0 \cdot 1$ litres more water to make 1 litre.
4. a) $21 \times \frac{2}{10}=\frac{42}{10}=4.2 \quad 201 \times 0.03=6.03$ $310 \times 0.02=6.2 \quad 31 \times \frac{3}{100}=0.93$
b) $0.93 \quad 4.2 \quad 6.03 \quad 6.2$

b) Answers will vary; for example:

$$
20 \times 40=800 ; 0.2 \times 400=80
$$

Reflect

Answers will vary; check that children recognise the importance of using core multiplication facts and adjusting for decimals by dividing by $10,100,1,000$, etc., or adjusting for multiples of 10 by multiplying.

Lesson 7: Multiplying decimals (2)

\rightarrow pages 24-26

1. a) $3 \times 0.5=1.5$
c) $5 \times 0.03=0.15$ $3 \times 0.05=0.15$
b) $4 \times 0.06=0.24$
d) $6 \times 0.04=0.24$
$6 \times 0.04=0.24$
$4 \times 0.06=0.24$
2. a) $4 \times 3=12$
$0.4 \times 3=1.2$
$0.04 \times 3=0.12$
$4 \times 0.3=1.2$
$4 \times 0.03=0.12$
b) $14 \times 3=42$
$1.4 \times 3=4.2$
$14 \times 0.3=4.2$
$0.14 \times 3=0.42$
$0.03 \times 14=0.42$
c) $7 \times 8=56$
$7 \times 0.08=0.56$
$0.7 \times 8=5.6$
$0.07 \times 80=5.6$
$700 \times 0.8=560$
3. $140 \times 0.07=9.8$ is closest to 10 .
4. Isla is not correct. The answers to the calculations are correct.
Diagrams will vary; for example: children could show an array, counters on a place value grid, jumps along a number line, etc.
5. a) Answers will vary; for example:

$$
\begin{aligned}
& 2.3 \times 45=103 \cdot 5 \\
& 2.4 \times 35=84 \\
& 2.5 \times 43=107.5 \\
& 3.4 \times 25=85
\end{aligned}
$$

b) Smallest product: $2.4 \times 35=84$

Largest product: $5.2 \times 43=223.6$
Difference: 139.6

Reflect

Answers will vary. Children should use their knowledge of factors of 36 and their understanding of place value in decimals to identify calculations; for example:
$0.12 \times 3=0.36 ; 0.09 \times 4=0.36 ; 0.6 \times 0.6=0.36$

Lesson 8: Dividing decimals (I)

\rightarrow pages 27-29

1. a) $0.6 \div 3=0.2$
b) $1 \cdot 2 \div 6=0 \cdot 2$
c) $0.08 \div 4=0.02$
2. a) $36 \div 4=9$
$3.6 \div 4=0.9$
$0.36 \div 4=0.09$
$48 \div 4=12$
$16 \div 4=4$
$1 \cdot 6 \div 4=0 \cdot 4$
$0.16 \div 4=0.04$
$4 \cdot 8 \div 4=1 \cdot 2$
$28 \div 4=7$
$2 \cdot 8 \div 4=0.7$
$0.48 \div 4=0.12$
$0.28 \div 4=0.07$
b) $3.6 \div 6=0.6$
$0.72 \div 6=0.12$
$4.8 \div 6=0.8$
$0.18 \div 6=0.03$
3. a) $0.2 \div 4=0.05$
c) $0.4 \div 8=0.05$
b) $0.3 \div 6=0.05$
d) $0.5 \div 10=0.05$

In each calculation, the second number (divisor) is equal to the first number (dividend) multiplied by 10 and doubled. This means that the answer to each calculation will be $\frac{1}{20}$ or 0.05 .
4. $7 \times 8=56$
$5.6 \div 7=0.8$
$0.7 \times 8=5.6$
$5.6 \div 8=0.7$
5. 1 pen costs $£ 0 \cdot 20$.
6. Amelia's sunflower is 0.7 m tall; Bella's is 2.1 m tall; Lee's is 2.6 m tall.

Reflect

Answers will vary; for example: 8 oranges cost $£ 3 \cdot 20$, how much does one orange cost? ($£ 0 \cdot 40$)

Lesson 9: Dividing decimals (2)

\rightarrow pages 30-32

1.

$$
\begin{gathered}
1 \cdot 0 \quad 6 \\
4 \longdiv { 4 } \cdot 2 ^ { 2 } 4 \\
4.24 \div 4=1.06
\end{gathered}
$$

$1 \cdot 1 \quad 5$
$8 \longdiv { 9 \cdot { } ^ { 1 } 2 ^ { 4 } 0 }$
$9.2 \div 8=1.15$
2. a)

No decimal places	One decimal place	Two decimal places
E	B, C	A, D, F

b) $\mathrm{A} 25 \div 4=6.25$

D $8.72 \div 4=2.18$
B $2.6 \div 2=1.3$
E $1,080 \div 4=270$
C $100 \cdot 5 \div 5=20 \cdot 1$
F $1.38 \div 3=0.46$
3. a) $10.5 \div 3=3.5 \quad 10.5 \div 6=1.75 \quad 10.5 \div 30=0.35$
b) Explanations may vary; for example:

The core fact is $10.5 \div 3=3.5$.
$10 \cdot 5 \div 6$ is connected to this since:
$10 \cdot 5 \div 6=10.5 \div 3 \div 2=3.5 \div 2=1.75$
$10.5 \div 30$ is connected to this since:
$10.5 \div 30=10.5 \div 3 \div 10=3.5 \div 10=0.35$
4. a) The digit in the second decimal place is incorrect; she has carried over 3 but written it in the hundredths column. The 3 tenths should be exchanged for 30 hundredths. The correct answer is 0.733 .
b) Dividing a number by 10 is most efficiently done using place value. $7 \cdot 33$ is made up of 7 ones, 3 tenths and 3 hundredths. When a number is divided by 10 each digit moves one position to the right (because this makes its value 10 times smaller) so the answer will have 7 tenths, 3 hundredths and 3 thousandths. $7.33 \div 10=0.733$
5. $27.5 \div 10=2.75$
$\frac{7.7}{11}=0.7$
6. 6 large blocks $=6 \times 14.2 \mathrm{~kg}=85.2 \mathrm{~kg}$, so 1 small block $=85 \cdot 2 \mathrm{~kg} \div 8=10.65 \mathrm{~kg}$.
The mass of 1 small block is 10.65 kg .

Reflect

Answers could vary; for example:

$$
4 \begin{array}{rrrrr}
3 & 0 & \cdot & 7 & 5 \\
\hline{ }^{1} 2 & 3 & \cdot{ }^{3} 0^{2} 0
\end{array}
$$

Children might start from the division $123 \div 4=30$ r 3 and then divide the remainder by 4.
$3 \div 4=\frac{3}{4}=0.75$ so $123 \div 4=30+0.75=30.75$

End of unit check

\rightarrow pages 33-34

My journal

$3: 3 \times 0.8=2.4 \div 20=0.12$
$6: 6 \times 0.8=4.8 \div 20=0.24$
$20: 20 \times 0.8=1.6 \div 20=0.8$
100: $100 \times 0.8=80 \div 20=4$
The output is always multiplied by $\frac{0.8}{20}=\frac{8}{200}=\frac{1}{25}$ which is the same as dividing by 25 ; for example:
$3 \div 25=\frac{3}{25}=0 \cdot 12$

Power play

Answers will vary.

