Unit 5: Multiplication and division (I)

Lesson I: Multiples

\rightarrow pages 108-110

1. $3 \times 3=9$
$5 \times 3=15$
$8 \times 3=24$
These all show the multiples of the number 3 .
9,15 and 24 are all multiples of 3 .
2. a) $10,20,30,40,50,60,70,80,90$ and 100 should be shaded in.
b) $3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48$, $51,54,57,60,63,66,69,72,75,78,81,84,87,90$, 93,96 and 99 should be shaded in.
3. a) $80,30,102$ and 300 should be circled.
b) $70,95,530,35$ and 300 should be circled.
4. Circled: is not

Explanations will vary; for example: 64 is not a multiple of 6 because $64 \div 10$ has a remainder so 64 is not a multiple of 6 .
5. a) Answers may vary, but the top right box in the two-way table cannot be filled in as all multiples of 6 are also multiples of 2 :
$\left.\begin{array}{|l|ll|l|}\hline & \begin{array}{l}\text { Multiple } \\ \text { of 2 }\end{array} & \begin{array}{l}\text { Not a } \\ \text { multiple of 2 }\end{array} \\ \hline \text { Multiple of 6 } & 6 & 12 & \\ \hline \begin{array}{l}\text { Not a } \\ \text { multiple of 6 }\end{array} & 8 & 4 & 5\end{array}\right]$

b) The section 'multiple of 6 and not a multiple of 2 ' has no numbers in it as all multiples of 6 are also multiples of 2.
6. It is sometimes true.

Explanations will vary; for example:
If you add the same number of multiples of 4 and 5 together, then the answer will also be a multiple of 9; for example: $(3 \times 4)+(3 \times 5)=12+15=27.27$ is a multiple of 9 .
It is not always true, though, because 12 is a multiple of 4 and 20 is a multiple of 5 but $4+20=24$, which is not a multiple of 9 .
7. No, 777 will not be in the sequence even though it is a multiple of 7 because the start number is not zero but 2. That means all the numbers in the sequence will be 2 more than a multiple of 7 .

Reflect

Richard is confused about multiples. A multiple of 7 is any number in the 7 times-table. As 10 is not in the 7 times-table it is not a multiple of 7 . However, the calculation does show that 70 is in the 7 times-table so 70 is a multiple of 7 .

Lesson 2: Factors

\rightarrow pages 111-113

1. $1 \times 18=18$
$2 \times 9=18$
$6 \times 3=18$
$4 \times 5=20$
$2 \times 10=20$
$1 \times 20=20$
The factors of 18 are: $1,2,3,6,9,18$
The factors of 20 are: $1,2,4,5,10,20$
2. Arrays should be drawn for $1 \times 32,2 \times 16$ and 4×8. The factors of 32 are $1,2,4,8,16$ and 32 .
3. a) Circled: is not

Explanations may vary; for example:
6 is not a factor of 28 because 6 does not divide into 28 exactly.
b) Circled: is

Explanations may vary; for example:
7 is a factor of 84 because 7 goes into 84 exactly 12 times.
4. a) $1 \times 36=36$
b) $36 \div 1=36$
$2 \times 18=36$ $36 \div 2=18$
$3 \times 12=36$ $36 \div 3=12$
$4 \times 9=36$ $36 \div 4=9$
$6 \times 6=36$ $36 \div 6=6$

36 has 9 factors. They are $1,2,3,4,6,9,12,18$ and 36 .
5. $1,2,5,10,25$ and 50 .
6. a) Numbers shaded: $20,1,10,50,4,5,100$
b) The missing factors are 2 and 25 .
7. It is always true. If X is a factor of Y, then Y is a multiple of X.

Reflect

Andy is wrong. Explanations will vary; for example: Some even numbers $(4,8,12, \ldots)$ are multiples of 4 but others are not $(2,6,10, \ldots)$.
70 is even, which means it is a multiple of 2 . Therefore 70 does have a factor of 2 .

Lesson 3: Prime numbers

\rightarrow pages 114-116

1. 11 cannot be made into an array (other than a 1 by 11 array) as there is always a remainder. Children should show this pictorially.
11 has 2 factors. It is a prime number.
2. Arrays should be drawn for:
$15: 1 \times 15$ or 3×5
17: 1×17
19: 1×19
$21: 1 \times 21$ or 3×7
17 and 19 are prime numbers.
15 and 21 are composite numbers.
3.

2 is in both groups.
1,15 and 99 are not in either group.
No other number can join both groups. All even numbers have 2 as a factor, therefore even numbers which are not 2 will have more than 2 factors (1,2 , the number itself ...) so they are not prime.
4. 99 is not a prime number as it is divisible by $1,3,9,11$, 33 and 99 so it has more than 2 factors. It is sufficient to show that it has at least 1 factor in addition to 1 and itself; for example: recognising that 3 is a factor of 99 is sufficient to show that it is not prime.
5. a) Circled: true

This is true because some odd numbers ($3,5,7,11$, \ldots) are prime, but others $(9,15,21,25, \ldots)$ are not.
b) Circled: true

This is true because all numbers that end in 5 have 5 as a factor. So every number that ends in 5 (apart from 5 itself) will have more than 2 factors (1,5 , the number itself ...) so they are not prime.
6. a) Circled: $2,3,5,7,11,13,17,19,23,29,31,37,41$
b) Answers may vary; for example:

Most prime numbers appear in the 1st and 5th columns.
c) Some columns have no prime numbers because they only contain even numbers greater than 2.
d) Chart filled in up to 100 and circled: $43,47,53,59$, $61,67,71,73,79,83,89,97$
The 5 th column has the most prime numbers.

Reflect

Answers will vary; for example:
Children could draw 33 dots in groups of 3 or 11 to show that 33 has factors of 3 and 11 , making it a composite number.

Lesson 4: Using factors

\rightarrow pages 117-119

1. a) $3 \times 2 \times 2=12$
b) $2 \times 3 \times 2=12$ or $2 \times 2 \times 3=12$
c) The two calculations give the same product. This is because the 3 factors are the same.
2.

$5 \times 5 \times 2=50$

$5 \times 2 \times 5=50$
3. $4 \times 20 \times 5=400$
a) $4 \times 20=80$
$80 \times 5=400$
b) $20 \times 5=100$
$100 \times 4=400$
There are 400 hinges in total.
4.

Answers may vary, but look out for the most efficient calculations.
5. Order of factors may vary.
a)

b) Children should draw a factor tree showing: $75=3 \times 5 \times 5$
c) Children should draw a factor tree showing: $200=2 \times 2 \times 2 \times 5 \times 5$
d) Answers will vary; ensure all factors are prime numbers.

Reflect

Answers will vary; for example:
Children could draw a factor tree to show the different factors of 28 and then use the factors in a number sentence to equal 140. Encourage the use of the factor 2, as $2 \times 5=10$ and will be easier to multiply; for example: $28 \times 5=14 \times 2 \times 5=14 \times 10=140$.

Lesson 5: Squares

\rightarrow pages 120-122

1. a) $3^{2}=3 \times 3=9$

9 is a square number.
b) 6 squared $=6^{2}$
$6 \times 6=36$
36 is a square number.
2. Children must show $6 \times 6=36$ as a square number.

$$
6^{2}=36
$$

3. 10 is not a square number. Drawings should show that 10 cannot be arranged as a square array.
4. a) Circled: does

This does show a square number because it represents $3 \times 3=9$.
b) Circled: does not

This does not show a square number because 18 cannot be arranged as a square array.
c) Circled: does

This does show a square number because there are 5 parts of 5.25 is a square number.
5. Diagrams may vary. Ensure children represent 16 as 4×4.
6. Shaded: 4, 1, 81, 144
7. a)

Number	\mathbf{q}	$\mathbf{2 5}$	$\mathbf{4 9}$
All factors	I, 3, 9	$1,5,25$	$1,7,49$
How many factors?	3	3	3

b) Answers will vary; for example: 16 has factors $1,2,4,8$ and 16 so has 5 factors.
c) Yes, Isla is correct. Non-square numbers have pairs of factors, so will always have an even number of factors. As one of the factor pairs in a square number uses the same factor twice, this will mean the square number will always have an odd number of factors.

Reflect

There are 5 square numbers between 50 and 150 . They are: $64,81,100,121$ and 144.

Lesson 6: Cubes

\rightarrow pages 123-125

1. Diagrams matched:

1 st diagram $\rightarrow 3 \times 3 \times 3$
2nd diagram $\rightarrow 2^{3}$
3rd diagram $\rightarrow 2$ squared
4 th diagram $\rightarrow 2 \times 3$
2. a) $5^{3}=5 \times 5 \times 5$
b) 6 cubed $=6 \times 6 \times 6$
c) $1^{3}=1 \times 1 \times 1$
3. a) $4 \times 4=16$
$4 \times 16=64$
$4^{3}=4 \times 4 \times 4=64$
b) $2 \times 4=8$
$4 \times 8=32$
$32 \times 2=64$
c) $2 \times 8=16$
$2 \times 16=32$
$32 \times 2=64$
4. a) 3 is not a cube number as $1^{3}=1 \times 1 \times 1=1$
b) To work out 3^{3}, multiply

$$
3 \times 3 \times 3 . \text { So, } 3 \times 3=9 ; 9 \times 3=27
$$

5. a) 7 cubed $=343$
b) $10^{3}=1,000$
c) $1^{3}=1$
d) $0^{3}=0$
6. a) Eight $2 \times 2 \times 2$ cubes will make a $4 \times 4 \times 4$ cube. Explanations may vary; for example: $4^{3}=64$ and $2^{3}=8$ and eight lots of 8 go into 64 .
b) Eight $5 \times 5 \times 5$ cubes would make a $10 \times 10 \times 10$ cube.
Explanations may vary; for example:
$10^{3}=1,000$ and $5^{3}=125$ and eight lots of 125 go into 1,000.
c) $20^{3}=20 \times 20 \times 20=8,000$

Reflect

You could work systematically to calculate the first 5 cube numbers. These are:
$1^{3}=1 \times 1 \times 1=1$
$2^{3}=2 \times 2 \times 2=8$
$3^{3}=3 \times 3 \times 3=27$
$4^{3}=4 \times 4 \times 4=64$
$5^{3}=5 \times 5 \times 5=125$

Lesson 7: Inverse operations

\rightarrow pages 126-128

1. a) $8 \times 4=32$
$32 \div 8=4$
$32 \div 4=8$
b) $6 \times 3=18$
$18 \div 6=3$
$18 \div 3=6$
c) $4 \times 25=100$
$100 \div 4=25$
$100 \div 25=4$
2. a) $48 \div 6=8$
b) $8 \times 6=48$
3. a) There are 6 vases and 12 white roses.
b) She needs 33 red roses.
4. a) $2 \times 16=32$
$32 \div 16=2$
$64 \div 2=32$
$32 \times 2=64$
b) $4 \times 5=20$
$20 \div 5=4$
$100 \div 5=20$
$100=20 \times 5$
c) $15=45 \div 3$
$30=90 \div 3$
$150 \div 5=30$
$15=75 \div 5$
5. Bella has written the numbers 5,13 and 65 in the wrong order in the second division. It should say $65 \div 5=13$. When you use the numbers in a multiplication calculation to write a related division calculation, the product (answer from the multiplication) will be the first number in the related division.
6. a) Reena started with 23 .
b) Andy divided by 7 .
c) Possible starting numbers: 61, 67, 73, 79 or 97 .

Reflect

$18 \div 6=3 \quad 54 \div 3=18$
Encourage children to use the inverse to solve the missing number equations; for example:
$3 \times ?=18$ and $3 \times 18=$?

Lesson 8: Multiplying whole numbers by 10,100 and I,000

\rightarrow pages 129-131

1. a) $4 \times 100=400$
b) $10 \times 6=60$ (6 ten counters drawn)
c) $1,000 \times 5=5,000$ (5 thousand counters drawn)
2. Diagrams matched:

1 st diagram $\rightarrow 1 \times 3$
2nd diagram $\rightarrow 100 \times 3$
3 rd diagram $\rightarrow 3 \times 1,000$
4 th diagram $\rightarrow 10 \times 10$
3. a) $11 \times 1=11$
b) $11 \times 100=1,100$
c) $11 \times 10=110$
d) $11 \times 1,000=11,000$
4. Errors corrected: $40 \times 100=4,000($ not 400 $)$
$1,000 \times 20=20,000($ not 2,000$)$
5.

	TTh	Th	H	T	O
Number				3	7
$\times 10$			3	7	0
$\times 100$		3	7	0	0
$\times 1,000$	3	7	0	0	0

	TTh	Th	H	T	O
Number				7	0
$\times 10$			7	0	0
$\times 100$		7	0	0	0
$\times \mathbf{I}, 000$	7	0	0	0	0

6. a) $5 \times 10=50$
$50 \times 10=500$
$50 \times 100=5,000$
$5 \times 1,000=5,000$
b) $3 \times 1,000=3,000$
$300 \times 10=3,000$
$300 \times 100=30,000$
$300 \times 1=300$
c) $15 \times 1,000=15,000$
$100 \times 15=1,500$
$1,500=150 \times 10$
$15,000=150 \times 100$
Children may explain what they notice in different ways; for example:
Each set of calculations are related.
7. a) Answers will vary; for example:
$8 \times 100<90 \times 10$
$5 \times 10 \times 10<20 \times 100$
$100 \times 50>10 \times 10 \times 10 \times 4$
$7 \times 10<10 \times 10 \times 6<10 \times 100$
b) Possible answers (the order of operations may
vary):
$2 \times 1,000 \times 10=2,000 \times 10$
$2 \times 100 \times 100=2,000 \times 10$
$2 \times 1,000 \times 100=2,000 \times 100$
$2 \times 1,000 \times 1,000=2,000 \times 1,000$
$20 \times 100=200 \times 10$
$20 \times 1,000=200 \times 100$
$2,000 \times 10=200 \times 100$
$2,000 \times 100=200 \times 1,000$

Reflect

Answers will vary. Children should show calculations which involve powers of 10 and have the answer 1,300; for example:
$13 \times 100=1,300$
$130 \times 10=1,300$
$1,300 \times 1=1,300$

Lesson 9: Dividing whole numbers by IO, 100 and I,000

\rightarrow pages 132-134

1. a)

450 is 45 tens.
$450 \div 10=45$
b)

2,300 is 23 hundreds.
$2,300 \div 100=23$
c) 7,000 is 7 thousands. $7,000 \div 1,000=7$
d) Answers may vary but most likely answer is:

500 is 5 hundreds.
$500 \div 100=5$
2. $1,100 \div 11=100$
$1,100 \div 100=11$
3. a) $8,000 \div 1,000=8$
$81,000 \mathrm{~kg}$ weights would balance the scales.
b) $8,000 \div 100=80$

80100 kg weights would balance the scales.
c) $8,000 \div 10=800$

80010 kg weights would balance the scales.
4. a) $500 \div 10=50$
$500 \div 100=5$
$50 \div 10=5$
b) $1,500 \div 100=15$
$150 \div 10=15$
$15,000 \div 1,000=15$
c) $5,000 \div 50=100$
$5,000 \div 500=10$
$500 \div 50=10$
5. a) There are 20 marbles in each jar.
b) In total, there are 100 jars.
6. a)

\sum	\triangle
5	500
70	7,000
7	700
500	50,000

is 100 times greater than $\bar{\sim}$.
b) Calculations will vary but Q should be $1,000 \times$; for example:
$4,000 \div 10=10 \times 10 \times 4 ; 13,000 \div 10=10 \times 10 \times 13$

Reflect

$3,300 \div 100=33$ is correct. When you divide by 100 , all the digits move 2 places to the right. You can use a place value grid to check.

Lesson 10: Multiplying and dividing by multiples of 10,100 and 1,000

\rightarrow pages 135-137

1. Diagrams matched:

Top diagram $\rightarrow 4 \times 3$ tens $\rightarrow 12$ tens $=120$
2nd diagram $\rightarrow 3 \times 2$ hundreds $\rightarrow 6$ hundreds $=600$
3rd diagram $\rightarrow 2 \times 3$ thousands $\rightarrow 6$ thousands $=6,000$
4 th diagram $\rightarrow 3 \times 4$ hundreds $\rightarrow 12$ hundreds $=1,200$
2. Children should draw 5 lots of 3 hundred counters and 3 lots of 5 thousand counters.

a) $5 \times 300=15$ hundreds $=1,500$
b) $3 \times 5,000=15$ thousands $=15,000$
3. a) $300 \times 6=1,800$
$6 \times 300=1,800$
$1,800 \div 300=6$
$1,800 \div 6=300$
b) $30 \times 60=1,800$
$60 \times 30=1,800$
$1,800 \div 30=60$
$1,800 \div 60=30$
4. a) $3 \times 700=2,100$
b) $5,000 \times 9=45,000$
c) $5 \times 80=400$
d) $1,200 \div 300=4$
e) $150 \div 5=30$
f) $72,000 \div 9,000=8$
5. I agree with Reena.

Explanations will vary; for example:
because $4 \times 5=20$ so $40 \times 5=200$ and $40 \times 50=2,000$.
6. a) $600 \times 6=400 \times 9$

There are nine 400 g boxes.
b) $80 \times 70=800 \times 7$
$2,100 \div 30=21,000 \div 300$
$40,000 \div 500=400 \div 5$

Reflect

Answers may vary but should include multiplying and/or dividing by powers of ten or multiples of powers of ten; for example: $4 \times 10=40 ; 80 \div 2=40 ; 800 \div 20=40$

End of unit check

\rightarrow pages 138-139

My journal

Children may write answers such as:
I know 250 isn't a square number because 15 squared is 225 and 16 squared is $256 ; 2,500$ is a square number because 50×50 is 2,500 ; I know 2,500 is going to be square because 5×5 is 25 . If I multiply both 5 s by 10 then the answer must be multiplied by 100 .
$25 \times 100=2,500$.

Power puzzle

Prime factors of $90=2 \times 3 \times 3 \times 5$
Prime factors of $210=2 \times 3 \times 5 \times 7$

