Reasoning and Problem Solving Step 8: Count Faces on 3D Shapes

National Curriculum Objectives:

Mathematics Year 2: (2G2b) Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces
Mathematics Year 2: (2G3) Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramidl

Differentiation:

Questions 1, 4 and 7 (Reasoning)
Developing Identify and explain the odd one out from three 3D shapes. All shapes presented in the same orientation and size. Perspective lines visible on all shapes. Expected Identify and explain the odd one out from four 3D shapes. All shapes presented in different orientations and sizes. Perspective lines visible on some shapes.
Greater Depth Identify and explain the odd one out from four 3D shapes. All shapes presented in different orientations and sizes. No perspective lines visible on shapes, with the use of some real-life objects.

Questions 2, 5 and 8 (Reasoning)
Developing Complete the missing parts of a table. All shapes presented in the same orientation and size. Perspective lines visible on all shapes.
Expected Complete the missing parts of a table. All shapes presented in different orientations and sizes. Perspective lines visible on some shapes.
Greater Depth Complete the missing parts of a table. No shapes given.
Questions 3, 6 and 9 (Problem Solving)
Developing Investigate and compare the number of faces of multiple 3D shapes. Includes two types of shape. Image of all shapes provided and all shapes presented in the same orientation and size. Perspective lines visible on all shapes.
Expected Investigate and compare the number of faces of multiple 3D shapes. Includes three types of shape. One image for each type of shape provided and shapes presented in different orientations and sizes. Perspective lines visible on some shapes.
Greater Depth Investigate and compare the number of faces of multiple 3D shapes. Includes four types of shape. No pictures provided.

More Year 2 Properties of Shape resources.

Did you like this resource? Don't forget to review it on our website.

la. Look at the faces. Which shape is the odd one out?

Explain your answer.
访

2a. Complete the table below.

Name	Number of flat faces	2D shape of faces
cone		
		square
		triangle

3a. Which group of shapes has the greatest number of flat faces?

3 cylinders

2 cuboids

lb. Count the faces. Which shape is the odd one out?
A.

B.

C.

Explain your answer.向

2b. Complete the table below.

Name	Number of flat faces	2D shape of faces
		square
		circle
cylinder		

3b. Which group of shapes has the greatest number of flat faces?

2 square-based pyramids

2 triangular-based pyramids

Count Faces on 3D Shapes

Count Faces on 3D Shapes

4a. Look at the shape of the faces. Which shape is the odd one out?
A.

B.

C.

D.

Explain your answer.

5a. Complete the table below.

Name	Number of flat faces	2D shape of faces
cone		rectangle triangle

6a. Which group of shapes has the greatest number of flat faces?

3 triangular prisms

3 cuboids

5 spheres

6b. Which group of shapes has the greatest number of flat faces?

2 cubes

4b. Look at the surfaces. Which shape is the odd one out?
A.

B.

C.

D.

Explain your answer.
E

5b. Complete the table below.

Name	Number of flat faces	2D shape of faces
		square
cuboid		
		triangle

2 cubes

4 triangular-based pyramids

5 cylinders

7a. Look at the surfaces. Which shape is the odd one out?
A.

C.

D.

Explain your answer.

8a. Complete the table below using different shapes.

Name	Number of flat faces	2D shape of faces
triangular- based pyramid		
		triangle
		square

9a. Which group of shapes has the greatest number of flat faces?
three triangular-based pyramids
four triangular prisms
three square-based pyramids
two cuboids

7b. Count the faces and look at the numbers. Which shape is the odd one out?
A.
C.

B.

D.

Explain your answer.

8b. Complete the table below using different shapes.

Name	Number of flat faces	2D shape of faces
		square
		circle
cylinder		

9b. Which group of shapes has the greatest number of flat faces?
three cubes
eight cylinders
three triangular-based pyramids
łwo triangular prisms

Reasoning and Problem Solving Count Faces on 3D Shapes

Reasoning and Problem Solving Count Faces on 3D Shapes

Developing

1a. B. It has 6 flat faces the other shapes have 5.
2a.

Name	Number of flat faces	2D shape of faces
cube	6	square
cone	1	circle
cylinder	2	circle

3a. 2 square-based pyramids have the greatest number of flat faces (10 in total).
2 triangular-based pyramids = 8 flat faces

Expected

4b. D. It has no curved surfaces.
5b.

Name	Number of flat faces	2D shape of faces
square-based pyramid	5	square triangle
cuboid	6	rectangle square
triangular- based pyramid	4	triangle

6b. 4 triangular-based pyramids have the greatest number of flat faces (16 in total). 2 cubes $=12$ flat faces; 5 cylinders $=10$ flat faces

Greater Depth

7b. C. It has an odd number of faces.
8b. Various answers, for example:

Name	Number of flat faces	2D shape of faces
square-based pyramid	5	square triangle
cone	1	circle
cylinder	2	circle

9b. 3 cubes have the greatest number of flat faces (18 in total).
8 cylinders $=16$ flat faces; 3 triangularbased pyramids = 12 flat faces; 2 triangular prisms $=10$ faces

9a. 4 triangular prisms have the greatest number of flat faces (20 in total). 3 triangular-based pyramids = 12 flat faces; 3 square-based pyramids $=15$ flat faces; 2 cuboids = 12 flat faces

Developing

1a. C. It is the only shape with a curved surface.

Name	Number of flat faces	2D shape of faces
cone	1	circle
cuboid	6	square rectangle
triangular- based pyramid	4	triangle

3a. 2 cuboids have the greatest number of flat faces (12 in total).
3 cylinders $=6$ flat faces

Expected

4a. B. It does not have a square face.

Name	Number of flat faces	2D shape of faces
cylinder	2	circle
triangular prism	5	rectangle triangle
cone	1	circle

6a. 3 cuboids have the greatest number of flat faces (18 in total).
3 triangular prisms = 15 flat faces; 1 sphere = 0 flat faces

Greater Depth

7a. A. It is the only shape with a curved surface.
8a. Various answers, for example:

Name	Number of flat faces	2D shape of faces
triangular- based pyramid	4	triangle
triangular prism	5	triangle rectangle
cube	6	square

2a.

5a.
\square

