St. Katharine's Knockholt Church of England (Aided) Primary School

St Katharine’s School Knockholt Calculation Policy

Updated October 2023

Maths at St Katharine's School Knockholt

We follow the guidelines of the National Curriculum and have developed teaching for mastery in maths across all classes. Teachers, in Key Stages 1 and 2, use Power Maths to guide lessons in which children learn using small steps to build on previous understanding. The concrete-pictorial-approach is used by all teachers, in all year groups. Staff are given autonomy in the use of fluency and problem solving alongside the Power Maths scheme to ensure that children all have the best opportunity to succeed in all areas of learning.
In Early Years staff use White Rose Maths and a range of other maths videos, games and songs to ensure children start their Maths journey with confidence and excitement.
The Primary National Curriculum 2014 sets out the maths curriculum by year group. The curriculum aims to ensure that all pupils: become fluent in the fundamentals of mathematics, , so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately; are able to reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language; and can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Teaching maths for mastery is a transformational approach to maths teaching which stems from high performing Asian nations such as Singapore. When taught to master maths, children develop their mathematical fluency without resorting to rote learning and are able to solve non-routine maths problems without having to memorise procedures. There is an inclusive approach where all children achieve and work in mixed ability groups. The pace of teaching is slower which results in greater progress.

Concrete - pictorial - abstract (CPA). Children and adults can find maths difficult because it is abstract. The CPA approach builds on children's existing knowledge by introducing abstract concepts in a concrete and tangible way. It involves moving from concrete materials, to pictorial representations, to abstract symbols and problems. Concrete is the "doing" stage. During this stage, students use concrete objects to model problems. This may for be the real object or a counter/cube to represent the object. Pictorial is the "seeing" stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures, diagrams or models that represent the objects from the problem. Abstract is the "symbolic" stage, where children use abstract symbols to model problems. The abstract stage involves the teacher introducing abstract concepts (for example, mathematical symbols). Children are introduced to the concept at a symbolic level, using only numbers, notation, and mathematical symbols (for example, $+,-, x, /$) to indicate addition, multiplication or division.

Addition

Steps of learning	Concrete	Pictorial	Abstract	
Aggregation	There are four purple blocks and three orange blocks. There are seven blocks.	Use pictures to add two numbers together as a whole. Or show it as a bar model. 8	$5+3=8$ 5 and 3 are the addends and 8 is the sum$3+5=8$ 3 are 5 the addends and 8 is the sum	Stem sentence: \qquad and \qquad are the addends and \qquad Is the sum. Conceptual understanding: if we change the order of the addends the sum remains the same (commutative law)
Augmentation	Act out stories with real children. First there were 4 children on the bus, then 3 more got on, now there are 7 children on the bus First there were 9 beads, then 3 were added. Now there are 12 beads.	Use counters as abstract representations of the story	$\square+2=5$ $2+\square=7$ Missing augend Missing addend Stem sentence: first \qquad then. \qquad now.. \qquad	Conceptual understanding: if 1 know two parts of the story I can work out the third part

Add three single digits	3 blue marbles, 5 yellow marbles and 2 red marbles, altogether that makes 10	The 2 represents the red marbles, the 3 represent marbles, the 5 represents the yellow marbles. The marbles altogether.	the blue re are 10	$3+2+4=2+4+3$ $2+3+5=3+2+5$ Conceptual understanding: when we add 3 numbers the total will be the same whichever pair we start with.
Make 10	If the total is more than 10 look to make 10 first			$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder. Conceptual understanding: look for pairs/groups of three addends that sum to 10 first
		3 and 7 make 10 then we add on the 5		$8+3+6+1=10+6=16$ Stem sentence: \qquad $+$ \qquad $+$ \qquad makes 10 then $10+$ \qquad makes

Bridging
through 10

There are 10 seats in a ride. 7 children have sat down. The carriage must be filled before starting a new one. 5 children arrive for the ride

Show the same story with counters to represent children

First I partition the 5 into 3 and 2.

Then I add 7 and 3 to make 10 . Then 10 and 2 make 12 $7+3=10 \quad 10+2=12$

Stem sentence: first I partition the into +, then I add ...to make 10 , then $10+\ldots .$.

Column method no regrouping	Make the two addends out of base ten. First add the ones. $4+3=7$ Then add the tens. $20+30=50$ $23+14=57$	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	tens ones 2 3 $+\quad 1$ 4 3 7 Formal written method
Column method with regrouping	$\begin{array}{ccc} \begin{array}{cc} 342+179= & 1 \\ 3 & 4 \\ 0 & 0 \\ 0 & 0.0 \end{array} & 2 \\ +1 & 0 & 9 \\ \hline & & \\ \hline \end{array}$		41 (6) make 10 make 10 $+\frac{184}{823}$

Subtraction

Learning steps
Subtraction as
Reduction
Counting back
strategy

Subtraction
through
$\mathbf{1 0}$

Column method with exchange	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one

10 s	1 s
9^{8}	14
	6
10 s	1 s
9^{8}	14
	6
8	8

	Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Multiplication

Learning steps

Repeated addition	Use different objects to add equal groups.	$5+5+5=15$	$2+2+2+2+2=10$
One to many correspondence		Four groups of three	$\begin{aligned} & 1 \times 3=3 \\ & 2 \times 3=6 \\ & 3 \times 3=9 \\ & 4 \times 3=12 \end{aligned}$
Multiplication is commutative		 $2 \times 4-8$ Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition.

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally between 2 people?	Children use pictures to share quantities. Put 18 sausages equally on 2 plates. $18 \div 2=9$	Share 9 buns between three people. $9 \div 3=3$

Division as grouping	Divide quantities into groups of a given number Use cubes, counters, objects or place value counters to aid understanding. $35 \div 5$ There are 7 groups of 5 in 35 $12 \div 4$ There are 3 groups of 4 in	Use a number line to show jumps in groups. The number of jumps equals the number of groups.	$28 \div 7=4$ Divide 28 into groups of 7. How many groups of 7 are in 28?
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. E.g. $15 \div 3=5 \quad 5 \times 3=15 \quad 15 \div 5=3 \quad 3 \times 5=15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences. 3 groups of 5	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. remainder 2	Complete written divisions and show the remainder using r.

Sivision of two-digit

