Maths at St Katharine's School
Key Stage 2
Teaching for mastery to develop fluency alongside conceptual understanding

Concrete then pictorial then abstract

Representations of numbers

Place Value

| M | HTH | TTH | Th | H | T | O • | $1 / 10$ | 1100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | |
| | | | | | | | | |

Addition and Subtraction

- Choose your method for accuracy and efficiency Which method would you choose?
a) $456+9=$
d) $15+16=$
b) $245-19=$
e) $77+5=$
c) $23.4+9.63=$
f) $2001-1998=$

Formal written methods addition and subtraction showing 'regrouping' and 'exchanging'

$$
\begin{array}{r}
4896 \\
+3425 \\
\hline 8321 \\
\hline 11
\end{array}
$$

$$
\begin{array}{r}
7845 \\
-4162 \\
\hline 3183 \\
\hline
\end{array}
$$

What is the bar model?

- Helps visualise the problem
- Has conceptual underpinning that we have to understand
- Is a way to communicate what the child has understood

> 37. Mre Tay sold 1285 apples on Monday.
> She sold 478 more apples on Tuesday than on Monday.
> She sold 329 fewer apples on Wednesday than on Tuesday. How many apples did she sel on Wednesday?

There are 36 children in the school band.

19 of them are boys.
How many girls are there?

Times Tables

Times tables your child is expected to learn

- Year $22 x, 5 x, 10 x$
- Year 3 3x, 4x, 8x
- Year $46 x, 7 x, 9 x, 11 x, 12 x$ Compulsory Test Summer Term
- Year 5 revision of all the times tables
- Year 6 revision of all the times tables

Times Tables

Why learn your times tables?
Really establish the patterns with the 2 x table before learning it by rote and before trying to learn all the others
Say the multiplication fact, not the multiple
Go slowly just up to 5×2 to start with
Have your child write it out and look at the products - point out the pattern - all even
Use concrete apparatus like $2 p$ coins to represent the fact
Call out individual facts eg $7 \times 2=$ practise, practise, practise

Times tables

'How many eggs are there? Count in groups of ten.'

10
10

- 'Three is a factor.'
- 'Ten is a factor.'
- 'The product of three and ten is thirty.'
- 'Thirty is the product of three and ten.'
- 'Ten, twenty, thirty. There are thirty eggs.'
- There are three groups of ten; there are thirty altogether.'
$3 \times 10=30$

$1 \times 10=10$	$10 \times 1=10$
$2 \times 10=20$	$10 \times 2=20$
$3 \times 10=30$	$10 \times 3=30$
$4 \times 10=40$	$10 \times 4=40$
$5 \times 10=50$	$10 \times 5=50$
$\mathbf{6 \times 1 0}=\mathbf{6 0}$	$\mathbf{1 0 \times 6}=\mathbf{6 0}$

Doubling or Halving

- $2 x$ leads to $4 x$
- 4 x leads to 8 x
- 10 x leads to 5 x

Distributive law

Multiplication by 7

$$
\begin{aligned}
& 3 \times a=(2 \times a)+(1 \times a) \\
& \text { Example } 3 \times 6=12+6=18
\end{aligned}
$$

$$
6 \times 6=(5 \times 6)+(1 \times 6)
$$

$$
7 \times 3=(5 \times 3)+(2 \times 3)
$$

$9 \times$ table

$9 \times 9=9$ less than 90
$9 \times 8=8$ less than 80
$9 \times 7=7$ less than 70
$9 \times 6=6$ less than 60

Written methods of multiplication

$$
3 \times 32=?
$$

10 s	1 s
3	2
	3
	6
9	0
9	6

Compact method
 $\begin{array}{r}18 \\ \times \quad 5 \\ \hline 9 \quad 0 \\ \hline 4\end{array}$

Using the correct language Expanded and compact short multiplication

Long Multiplication

$$
\begin{array}{r}
1234 \\
\times \quad 16 \\
\hline 7404(1234 \times 6) \\
12340 \\
\hline 19744
\end{array}
$$

Deep conceptual understanding not procedure alone

Year 3 \& 4 Division - grouping

$36 \div 3=12$

2.15 Short division

72 sticks shared equally between 3 children. How many sticks each?

$$
72 \div 3=\square
$$

Written methods of division

- Short division

- 2.24 Division: 2-digit divisors

$$
434 \div 31=14
$$

	$\mathbf{~} \mathbf{3 1}$
1	31
2	62
3	93
4	124
5	155
6	186
7	217
8	248
9	279
10	310

$310 \div$	31	$=$	10
$124 \div$	31	$=$	4
$434 \div 31$	$=$	14	

Long division

	$\mathbf{~} \mathbf{3 1}$
$\mathbf{1}$	31
2	62
3	93
4	124
5	155
6	186
7	217
8	248
9	279
10	310

$$
\begin{array}{rr}
0 & 1 \\
3 1 \longdiv { 4 } { } ^ { 4 } 3 & 124
\end{array}
$$

Extension by digging deeper

Year 3

```
Sophie has five coins in her pocket. How much money might she have?
What is the greatest amount she can have?
What is the least amount she can have?
If all the coins are different:
What is the greatest amount she can have?
What is the least amount she can have?
```

Year 4

Sally has 9 times as many football cards as Sam. Together they have 150 cards. How many more cards does Sally have than Sam?

The bar model is a useful scaffold to develop fluency in this type of question.

Year 5

Sam and Tom have $£ 67.80$ between them. If Sam has $£ 6 \cdot 20$ more than Tom, how much does Tom have?

Year 6

Two numbers have a difference of $2 \cdot 38$. What could the numbers be if:

- the two numbers add up to 6 ?
- one of the numbers is three times as big as the other number?

Two numbers have a difference of $2 \cdot 3$. To the nearest 10 , they are both 10 . What could the numbers be?

- Helps visualise the problem
- Has conceptual underpinning that we have to understand
- Is a way to communicate what the child has understood

37. Mrs Tay sold 1285 apples on Monday.
She sold 478 more apples on Tuesday than on Monday.
She sold 329 fewer apples on Wednesday than on Tuesday.
How many apples did she sel on Wednesday?
