St Katharine's School Knockholt Calculation Policy

Maths at St Katharine's School Knockholt. We follow the guidelines of the National Curriculum and have developed teaching for mastery in maths across all classes. Teachers use Maths No Problem to help plan lessons in which children learn using small steps to build on previous understanding. The concrete-pictorial-approach is used by all teachers, in all year groups.

The Primary National Curriculum 2014 sets out the maths curriculum by year group. The curriculum aims to ensure that all pupils: become fluent in the fundamentals of mathematics, , so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately; are able to reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language; and can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Teaching maths for mastery is a transformational approach to maths teaching which stems from high performing Asian nations such as Singapore. When taught to master maths, children develop their mathematical fluency without resorting to rote learning and are able to solve non-routine maths problems without having to memorise procedures. There is an inclusive approach where all children achieve and work in mixed ability groups. The pace of teaching is slower which results in greater progress.

Concrete - pictorial - abstract (CPA). Children and adults can find maths difficult because it is abstract. The CPA approach builds on children's existing knowledge by introducing abstract concepts in a concrete and tangible way. It involves moving from concrete materials, to pictorial representations, to abstract symbols and problems. Concrete is the "doing" stage. During this stage, students use concrete objects to model problems. This may for be the real object or a counter/cube to represent the object. Pictorial is the "seeing" stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures, diagrams or models that represent the objects from the problem. Abstract is the "symbolic" stage, where children use abstract symbols to model problems. The abstract stage involves the teacher introducing abstract concepts (for example, mathematical symbols). Children are introduced to the concept at a symbolic level, using only numbers, notation, and mathematical symbols (for example, $+,-, \mathrm{x}, /$) to indicate addition, multiplication or division.

Addition

Add three single digits	3 blue marbles, 5 yellow marbles and 2 red marbles, altogether that makes 10	The 2 represents the red marbles, the 3 represents the blue marbles, the 5 represents the yellow marbles. There are 10 marbles altogether.	$3+2+4=2+4+3$ $2+3+5=3+2+5$ Conceptual understanding: when we add 3 numbers the total will be the same whichever pair we start with.
Make 10	If the total is more than 10 look to make 10 first		$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Conceptual understanding: look for pairs/groups of three addends that sum to 10
		3 and 7 make 10 then we add on the 5	$8+3+6+1=10+6=16$ Stem sentence: \qquad $+$ \qquad \qquad \qquad makes 10 then 10 + \qquad makes
Bridging through 10	Act out with real children: There are 10 seats in a ride. 7 children have sat down. The carriage must be filled before starting a new one. 5 children arrive for the ride.	Show the same story with counters to represent children	First I partition the 5 into 3 and 2. Then I add 7 and 3 to make 10 . Then 10 and 2 make 12 $7+3=10 \quad 10+2=12$ Stem sentence: first I partition the into \qquad \qquad then I add ...to make 10 , then $10+\ldots .$.

Column method-no regrouping	Make the two addends out of base ten. First add the ones. $4+3=7$ Then add the tens. $20+30=50$ $23+14=57$	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	tens ones 2 $+\quad 1$ 4 3 7 Formal written method
Column method - with regrouping	$\begin{array}{ccc} \begin{array}{ccc} 342+179= & & a \\ 3 & 4 & 2 \\ 0 & 0 \bullet & 2 \\ +1 & \bullet \cdot \bullet & 9 \\ \hline & 0 & \\ \hline & & \\ \hline \end{array} & \\ \hline \end{array}$		make 100° 2(2) 3 make 10 $+\begin{gathered} 184 \\ \hline 8223 \\ \hline 1 \end{gathered}$

Subtraction

Learning steps
Subtraction as
Reduction
Counting back
strategy

Subtraction as difference			Difference is the gap: the difference between 4 and 7 is 3 , the difference between 7 and 4 is 3 .
			5 red cars
		Organise to show the difference Use picture/models to represent the items	
			Bar model to represent the relationship between numbers. Count up to find the difference.

Subtraction as partitioning	Act out stories with real children. 5 children are at the playground. 3 are playing on the swings. The rest are on the roundabout. How many are on the roundabout? Use counters to represent the children	Use a pictorial representation to show the part-part whole model.	$6-2=4$ Stem sentence: if is the whole and \qquad is a part then \qquad is the other part
Subtraction through 10	First there were 12 children on the ride, then 4 got off, now there are 8 . We first subtract the 2 children to get to 10 , then we subtract 2 more children leaving 8 on the ride.	Represent the children on the bead bar. $102-95=7$	Show it on a number line. Show how you partition the 4 $\begin{aligned} & 12-2=10 \quad 10-2=8 \\ & 12-2-2=8 \end{aligned}$

Multiplication

Learning steps

One to many correspondence			$\begin{aligned} & 1 \times 3=3 \\ & 2 \times 3=6 \\ & 3 \times 3=9 \\ & 4 \times 3=12 \end{aligned}$
Multiplication is commutative		Draw arrays in different rotations to find $2 \times 4-8$ commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition.

Division

Objective and Strategies
Division within arrays

